Understanding the circumstances that lead to pandemics is important for their prevention. We analyzed the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted "A" and "B." Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October to 8 December), and the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans before November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.
The COVID-19 pandemic led to an initial increase in the incidence of carbapenem-resistant Enterobacterales (CRE) from clinical cultures in South-East Asia hospitals, which was unsustained as the pandemic progressed. Conversely, there was a decrease in CRE incidence from surveillance cultures and overall combined incidence. Further studies are needed for future pandemic preparedness.
Southeast Asian countries are at the forefront of public health pressures due to a confluence of factors such as population growth, urbanization, environmental pollution, and infectious diseases (re)emergence. Therefore, the ability to be able to conduct research addressing local and regional needs is of paramount importance. As such, biobanking activities, the standardized collection of biological samples, and associated data, developed over the past few decades supporting ongoing biomedical and clinical research, as well as surveillance are of critical importance. However, the regulatory landscape of biobanking is not widely understood and reported, which this narrative review aims to address for the ASEAN member states. It is evident that there are specific regulatory arrangements within each ASEAN member state, which though may be sufficient for the current level of operations, are unlikely to support a regional sharing of biological samples, data, and eventually benefits from the conducted research. Additionally, legacy and often-overlapping regulatory frameworks exist, which raise the need of an eventual consolidation under a single framework. Thus, this field requires further study as well as the creation of viable, practical proposals that would allow for biobanking harmonization and thus the exchange of biological samples and data to be achieved regionally, if not further afield.