Displaying all 2 publications

Abstract:
Sort:
  1. Ho W, Lin Seow L, Musawi A
    J Clin Transl Res, 2018 May 28;4(1):70-74.
    PMID: 30873496
    Background: The purpose of the present study was to investigate the effect of different viscosities of polyvinyl siloxane (PVS) impression materials on the accuracy of the stone die produced.

    Methods: A three-unit bridge master model was fabricated using cold-cure acrylic resin. Four combinations of different viscosities of PVS impression materials - regular body (monophase) alone, light body with regular body, light body with heavy body, and light body with putty - were used to make an impression of the master model. Ten impressions from each group were taken and Type IV gypsum stone was used to generate the dies. The dies were measured at the inter-abutment distance, occlusogingival length, and shoulder width with a measuring microscope and were compared with the master model using one-way analysis of variance and Tukey (honest significant difference) test.

    Results: Differences were found for inter-abutment distance between the master model and the light body with regular body and light body with putty dies (both P < 0.02). A difference was found for shoulder width between the master model and the regular body alone die (P = 0.01). No differences were found for occlusogingival distance (all P > 0.08).

    Conclusion: Results suggested inter-abutment distance was most accurate when using a PVS light body combination. Occlusogingival length was accurate using any of the studied PVS combinations, and shoulder width was more accurate when using the regular body PVS.

    Relevance for patients: These results should be considered when choosing the viscosity of the PVS to use for producing impressions of high accuracy and fabricating a well-fitting fixed prosthesis.

  2. Daood U, Aati S, Akram Z, Yee J, Yong C, Parolia A, et al.
    Biomater Sci, 2021 Jul 27;9(15):5344-5358.
    PMID: 34190236 DOI: 10.1039/d1bm00555c
    The aim of this study was to characterize multiscale interactions between high intensity focused ultrasound (HIFU) and dentin collagen and associated matrix-metalloproteinases, in addition to the analysis of the effect of HIFU on bacterial biofilms and biological properties. Dentin specimens were subjected to 5, 10 or 20 s HIFU. XPS spectra were acquired and TEM was performed on dentin slabs. Collagen orientation was performed using Raman spectroscopy. Calcium measurements in human dental pulpal cells (hDPCs) were carried out after 7 and 14 days. For macrophages, CD36+ and CD163+ were analysed. Biofilms were analyzed using CLSM. Tandem mass spectroscopy was performed for the detection of hydroxyproline sequences along with human MMP-2 quantification. Phosphorus, calcium, and nitrogen were detected in HIFU specimens. TEM images demonstrated the collagen network appearing to be fused together in the HIFU 10 and 20 s specimens. The band associated with 960 cm-1 corresponds to the stretching ν1 PO43-. The control specimens showed intensive calcium staining followed by HIFU 20 s > HIFU 10 s > HIFU 5 s specimens. Macrophages in the HIFU specimens co-expressed CD80+ and CD163+ cells. CLSM images showed the HIFU treatment inhibiting bacterial growth. SiteScore propensity determined the effect of HIFU on the binding site with a higher DScore representing better site exposure on MMPs. Multiscale mapping of dentin collagen after HIFU treatment showed no deleterious alterations on the organic structure of dentin.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links