Displaying all 3 publications

Abstract:
Sort:
  1. Shirley Ding SL, Kumar S, Ali Khan MS, Ling Mok P
    Front Cell Neurosci, 2018;12:190.
    PMID: 30108483 DOI: 10.3389/fncel.2018.00190
    Retinal degeneration is a prominent feature in ocular disorders. In exploring possible treatments, Mesenchymal Stem Cells (MSCs) have been recognized to yield therapeutic role for retinal degenerative diseases. Studies have also displayed that erythropoietin (EPO) administration into degenerative retina models confers significant neuroprotective actions in limiting pathological cell death. In this study, we aimed to use MSCs to deliver EPO and to evaluate the ability of EPO to rescue retinal neurons from dying upon reactive oxidative stress induction. We derived human MSCs from Wharton's jelly (hWJMSCs) of the umbilical cord and cells were transduced with lentivirus particles encoding EPO and a reporter gene of green fluorescent protein (GFP). The supernatants of both transduced and non-transduced cells were collected and used as a pre-conditioning medium for Y79 retinoblastoma cells (retinal neuron cell line) following exposure to glutamate induction. Retinal cells exposed to glutamate showed reduced mitochondrial depolarization and enhanced improvement in cell viability when incubated with pre-conditioned media of transduced cells. Our results established a proof-of-concept that MSCs could be used as a candidate for the delivery of EPO therapeutic gene in the treatment of retinal degenerations.
  2. Samrot AV, Abubakar Mohamed A, Faradjeva E, Si Jie L, Hooi Sze C, Arif A, et al.
    Medicina (Kaunas), 2021 Aug 18;57(8).
    PMID: 34441045 DOI: 10.3390/medicina57080839
    Biofilms comprising aggregates of microorganisms or multicellular communities have been a major issue as they cause resistance against antimicrobial agents and biofouling. To date, numerous biofilm-forming microorganisms have been identified, which have been shown to result in major effects including biofouling and biofilm-related infections. Quorum sensing (which describes the cell communication within biofilms) plays a vital role in the regulation of biofilm formation and its virulence. As such, elucidating the various mechanisms responsible for biofilm resistance (including quorum sensing) will assist in developing strategies to inhibit and control the formation of biofilms in nature. Employing biological control measures (such as the use of bioactive compounds) in targeting biofilms is of great interest since they naturally possess antimicrobial activity among other favorable attributes and can also possibly act as potent antibiofilm agents. As an effort to re-establish the current notion and understanding of biofilms, the present review discuss the stages involved in biofilm formation, the factors contributing to its development, the effects of biofilms in various industries, and the use of various bioactive compounds and their strategies in biofilm inhibition.
  3. Elderdery AY, Alzahrani B, Alabdulsalam AA, Hamza SMA, Elkhalifa AME, Alhamidi AH, et al.
    Bioinorg Chem Appl, 2022;2022:6835625.
    PMID: 36212986 DOI: 10.1155/2022/6835625
    Currently, new advancements in the area of nanotechnology opened up new prospects in the field of medicine that could provide us with a solution for numerous medical complications. Although a several varieties of nanoparticles is being explored to be used as nanomedicines, cerium oxide nanoparticles (CeO2 NPs) are the most attractive due to their biocompatibility and their switchable oxidation state (+3 and +4) or in other words the ability to act as prooxidant and antioxidant depending on the pH condition. Green synthesis of nanoparticles is preferred to make it more economical, eco-friendly, and less toxic. The aim of our study here is to formulate the CeO2 NPs (CeO2 NPs) using Morinda citrifolia (Noni) leaf extract and study its optical, structural, antibacterial, and anticancer abilities. Their optical and structural characterization was accomplished by employing X-ray diffractography (XRD), TEM, EDAX, FTIR, UV-vis, and photoluminescence assays. Our CeO2 NPs expressed strong antibacterial effects against Gram-positive S. aureus and S. pneumonia in addition to Gram-negative E. coli and K. pneumonia when compared with amoxicillin. The anticancer properties of the green synthesized CeO2 NPs against human acute lymphoblastic leukemia (ALL) MOLT-4 cells were further explored by the meticulous study of their ability to diminish cancer cell viability (cytotoxicity), accelerate apoptosis, escalate intracellular reactive oxygen species (ROS) accumulation, decline the mitochondria membrane potential (MMP) level, modify the cell adhesion, and shoot up the activation of proapoptotic markers, caspase-3, -8, and -9, in the tumor cells. Altogether, the outcomes demonstrated that our green synthesized CeO2 NPs are an excellent candidate for alternative cancer therapy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links