In this study, performances of mesoporous Mo/Al2O3 catalysts prepared by sol-gel and post-hydrolysis methods in hydrocracking of atmospheric residual oil were compared. In addition, different methods: (i) the single step and (ii) conventional impregnation method to incorporate active metal over the mesoporous support were also investigated. For single step method, Mo/Al2O3 catalysts were synthesized directly by sol-gel and post-hydrolysis method. On the other hand, the impregnation method was a two step procedure which involved the production of alumina via sol-gel or post-hydrolysis method and followed by respective Mo impregnation. In general, mesoporous Mo/Al2O3 catalysts prepared by sol-gel method resulted in relatively higher surface area (> 400 m2/g) and large pore volume (- 0.8 cm3/g). Mo/Al2O3 catalysts prepared by sol-gel method exhibited higher hydrocracking activity as well. The Mo crystal size was found to relate directly with the hydrocracking result.