METHODS AND RESULTS: Abnormal behaviour, clinical signs, postinjection survival and histopathology (kidney, liver, eye and brain) were measured. Cumulative mortality of CON+ , free cells, ALG and treatments (F1-F7) was 30, 24, 22, 19, 17, 17, 16, 14, 14 and 12 out of 30 fish and the survival rates for E. faecium ABRIINW.N7 microencapsulated in an alginate-BS blend with 0·5, 1, 1·5, 2, 2·5 and 3% fenugreek were 43, 43, 47, 53, 53 and 60%, respectively. After the incorporation of fenugreek with the alginate-BS blend, there was an 8-21% increase in probiotic cell viability. Furthermore, the survival rate for the alginate-BS blend with 2·5 and 3% fenugreek (F6 and F7) was significantly (P ≤ 0·05) higher than other blends. The highest encapsulation efficiency, viability in gastrointestinal conditions and during storage time and excellent antipathogenicity against S. iniae were observed in alginate-BS +3% fenugreek formulation (F7).
CONCLUSIONS: It is recommended that probiotic strains like E. faecium ABRIINW.N7 in combination with local herbal gums, such as BS and fenugreek plus alginate, can be used as a suitable scaffold and an ideal matrix for the encapsulation of probiotics.
SIGNIFICANCE AND IMPACT OF THE STUDY: This study proposes models connecting process parameters, matrix structure and functionality.