Displaying 1 publication

Abstract:
Sort:
  1. Low JZB, Khang TF, Tammi MT
    BMC Bioinformatics, 2017 12 28;18(Suppl 16):575.
    PMID: 29297307 DOI: 10.1186/s12859-017-1974-4
    BACKGROUND: In current statistical methods for calling differentially expressed genes in RNA-Seq experiments, the assumption is that an adjusted observed gene count represents an unknown true gene count. This adjustment usually consists of a normalization step to account for heterogeneous sample library sizes, and then the resulting normalized gene counts are used as input for parametric or non-parametric differential gene expression tests. A distribution of true gene counts, each with a different probability, can result in the same observed gene count. Importantly, sequencing coverage information is currently not explicitly incorporated into any of the statistical models used for RNA-Seq analysis.

    RESULTS: We developed a fast Bayesian method which uses the sequencing coverage information determined from the concentration of an RNA sample to estimate the posterior distribution of a true gene count. Our method has better or comparable performance compared to NOISeq and GFOLD, according to the results from simulations and experiments with real unreplicated data. We incorporated a previously unused sequencing coverage parameter into a procedure for differential gene expression analysis with RNA-Seq data.

    CONCLUSIONS: Our results suggest that our method can be used to overcome analytical bottlenecks in experiments with limited number of replicates and low sequencing coverage. The method is implemented in CORNAS (Coverage-dependent RNA-Seq), and is available at https://github.com/joel-lzb/CORNAS .

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links