Displaying all 8 publications

Abstract:
Sort:
  1. Tan B, Philipp M, Hill S, Che Muhamed AM, Mündel T
    Front Physiol, 2020;11:585667.
    PMID: 33132918 DOI: 10.3389/fphys.2020.585667
    Chronic pain - pain that persists for more than 3 months - is a global health problem and is associated with tremendous social and economic cost. Yet, current pain treatments are often ineffective, as pain is complex and influenced by numerous factors. Hypohydration was recently shown to increase ratings of pain in men, but studies in this area are limited (n = 3). Moreover, whether hypohydration also affects pain in women has not been examined. In women, changes in the concentrations of reproductive hormones across menstrual phases may affect pain, as well as the regulation of body water. This indicates potential interactions between the menstrual phase and hypohydration on pain, but this hypothesis has yet to be tested. This review examined the literature concerning the effects of the menstrual phase and hypohydration on pain, to explore how these factors may interact to influence pain. Future research investigating the combined effects of hypohydration and menstrual phase on pain is warranted, as the findings could have important implications for the treatment of pain in women, interpretation of previous research and the design of future studies.
  2. Che Muhamed AM, Atkins K, Stannard SR, Mündel T, Thompson MW
    Temperature (Austin), 2016;3(3):455-464.
    PMID: 28349085 DOI: 10.1080/23328940.2016.1182669
    This study examined the thermoregulatory and circulatory responses, and exercise performance of trained distance runners during exercise in the heat (31°C) at varying relative humidity (RH). In a randomized order, 11 trained male distance runners performed 5 60 min steady-state runs at a speed eliciting 70% of VO2max in RH of 23, 43, 52, 61 and 71%. This was followed immediately with an incremental exercise test to volitional exhaustion. Core (Tre) and mean skin temperature (T¯sk), cardiac output (Q), heart rate (HR), and stroke volume (SV) were recorded at regular intervals. A significant (P = 0.003) main effect was detected for RH on mean body temperature (Tb), with a significantly higher Tb detected during steady-state exercise in the 61 and 71% RH compared to that in the 23% RH. During the steady-state exercise, no differences were detected in whole body sweat loss (P = 0.183). However, a significant main effect of RH was observed for HR and SV (P = 0.001 and 0.006, respectively) but not Q (P = 0.156). The time to exhaustion of the incremental exercise test was significantly reduced at 61 and 71% RH compared with 23% RH (P = 0.045 and 0.005, respectively). Despite an increase in dry heat loss, a greater thermoregulatory and circulatory stress was evident during steady-state exercise at 61 and 71% RH. This ultimately limits the capacity to perform the subsequent incremental exercise to exhaustion. This study highlighted that in a warm environment, the range of the prescriptive zone progressively narrows as RH increases.
  3. Kamaruddin HK, Ooi CH, Mündel T, Aziz AR, Che Muhamed AM
    Eur J Appl Physiol, 2019 Aug;119(8):1711-1723.
    PMID: 31098832 DOI: 10.1007/s00421-019-04161-2
    PURPOSE: To examine the effect of carbohydrate (CHO) mouth rinsing on endurance running responses and performance in dehydrated individuals.

    METHODS: In a double blind, randomised crossover design, 12 well-trained male runners completed 4 running time to exhaustion (TTE) trials at a speed equivalent to 70% of VO2peak in a thermoneutral condition. Throughout each run, participants mouth rinsed and expectorated every 15 min either 25 mL of 6% CHO or a placebo (PLA) solution for 10 s. The four TTEs consisted of two trials in the euhydrated (EU-CHO and EU-PLA) and two trials in the dehydrated (DY-CHO and DY-PLA) state. Prior to each TTE run, participants were dehydrated via exercise and allowed a passive rest period during which they were fed and either rehydrated equivalent to their body mass deficit (i.e., EU trials) or ingested only 50 mL of water (DY trials).

    RESULTS: CHO mouth rinsing significantly improved TTE performance in the DY compared to the EU trials (78.2 ± 4.3 vs. 76.9 ± 3.8 min, P = 0.02). The arousal level of the runners was significantly higher in the DY compared to the EU trials (P = 0.02). There was no significant difference among trials in heart rate, plasma glucose and lactate, and psychological measures.

    CONCLUSIONS: CHO mouth rinsing enhanced running performance significantly more when participants were dehydrated vs. euhydrated due to the greater sensitivity of oral receptors related to thirst and central mediated activation. These results show that level of dehydration alters the effect of brain perception with presence of CHO.

  4. Kamaruddin HK, Farah NMF, Aziz AR, Mündel T, Che Muhamed AM
    Eur J Appl Physiol, 2023 Jul;123(7):1507-1518.
    PMID: 36920510 DOI: 10.1007/s00421-023-05170-y
    PURPOSE: To determine whether carbohydrate mouth rinsing would improve endurance running performance of tropical natives in a warm-humid (30 °C and 70% relative humidity) environment.

    METHOD: Twelve endurance male runners [age 25 ± 3 years; peak aerobic capacity ([Formula: see text]O2peak) 57.6 ± 3.6 mL.kg-1.min-1] completed three time-to-exhaustion (TTE) trials at ~ 70% [Formula: see text]O2peak while swilling 25 ml of a 6% carbohydrate (CHO) or taste-matched placebo (PLA) as well as no mouth rinse performed in the control (CON) trial.

    RESULTS: TTE performance was significantly longer in both CHO and PLA trials when compared with the CON trial (54.7 ± 5.4 and 53.6 ± 5.1 vs. 48.4 ± 3.6 min, respectively; p  0.05). Similarly, plasma lactate and glucose as well as exercise heart rate were not influenced by the trials.

    CONCLUSIONS: The present study demonstrates that mouth rinsing, whether carbohydrate or placebo, provides an ergogenic benefit to running endurance when compared to CON in a heat stress environment. Nevertheless, the results do not support the notion that rinsing a carbohydrate solution provides a greater advantage as previously described among non-heat acclimated individuals within a temperate condition.

  5. Che Muhamed AM, Yusof HA, Stannard SR, Mündel T, Thompson MW
    Front Physiol, 2019;10:507.
    PMID: 31133869 DOI: 10.3389/fphys.2019.00507
    The understanding that fluid ingestion attenuates thermoregulatory and circulatory stress during exercise in the heat was based on studies conducted in relatively dry (∼50% RH) environments. It remains undetermined whether similar effects occur during exercise in a warm and more humid environment, where evaporative capacity is reduced. Nine well-trained, unacclimatised male runners were randomly assigned to perform four experimental trials where they ran for 60 min at an intensity of 70% VO2max followed by an incremental exercise test until volitional exhaustion. The four trials consisted of non-fluid ingestion (NF) and fluid ingestion (FI) in a warm-dry (WD) and warm-humid condition (WH). Time to exhaustion (TTE), body temperature (Tb), whole body sweat rate, partitional calorimetry measures, heart rate and plasma volume were recorded during exercise. There was no significant difference in Tb following 60 min of exercise in FI and NF trial within both WD (37.3°C ± 0.4 vs. 37.4°C ± 0.3; p > 0.05) and WH conditions (38.0°C ± 0.4 vs. 38.1°C ± 0.4; p > 0.05). The TTE was similar between FI and NF trials in both WH and WD, whereas exercise capacity was significantly shorter in WH than WD (9.1 ± 2.8 min vs. 12.7 ± 2.4 min, respectively; p = 0.01). Fluid ingestion failed to provide any ergogenic benefit in attenuating thermoregulatory and circulatory stress during exercise in the WH and WD conditions. Consequently, exercise performance was not enhanced with fluid ingestion in the warm-humid condition, although the humid environment detrimentally affected exercise endurance.
  6. Zheng H, Badenhorst CE, Lei TH, Liao YH, Che Muhamed AM, Fujii N, et al.
    Am J Physiol Regul Integr Comp Physiol, 2021 06 01;320(6):R780-R790.
    PMID: 33787332 DOI: 10.1152/ajpregu.00014.2021
    The current study investigated whether ambient heat augments the inflammatory and postexercise hepcidin response in women and if menstrual phase and/or self-pacing modulate these physiological effects. Eight trained females (age: 37 ± 7 yr; V̇o2max: 46 ± 7 mL·kg-1·min-1; peak power output: 4.5 ± 0.8 W·kg-1) underwent 20 min of fixed-intensity cycling (100 W and 125 W) followed by a 30-min work trial (∼75% V̇o2max) in a moderate (MOD: 20 ± 1°C, 53 ± 8% relative humidity) and warm-humid (WARM: 32 ± 0°C, 75 ± 3% relative humidity) environment in both their early follicular (days 5 ± 2) and midluteal (days 21 ± 3) phases. Mean power output was 5 ± 4 W higher in MOD than in WARM (P = 0.02) such that the difference in core temperature rise was limited between environments (-0.29 ± 0.18°C in MOD, P < 0.01). IL-6 and hepcidin both increased postexercise (198% and 38%, respectively); however, neither was affected by ambient temperature or menstrual phase (all P > 0.15). Multiple regression analysis demonstrated that the IL-6 response to exercise was explained by leukocyte and platelet count (r2 = 0.72, P < 0.01), and the hepcidin response to exercise was explained by serum iron and ferritin (r2 = 0.62, P < 0.01). During exercise, participants almost matched their fluid loss (0.48 ± 0.18 kg·h-1) with water intake (0.35 ± 0.15 L·h-1) such that changes in body mass (-0.3 ± 0.3%) and serum osmolality (0.5 ± 2.0 osmol·kgH2O-1) were minimal or negligible, indicating a behavioral fluid-regulatory response. These results indicate that trained, iron-sufficient women suffer no detriment to their iron regulation in response to exercise with acute ambient heat stress or between menstrual phases on account of a performance-physiological trade-off.
  7. Lei TH, Schlader ZJ, Che Muhamed AM, Zheng H, Stannard SR, Kondo N, et al.
    Eur J Appl Physiol, 2020 Apr;120(4):841-852.
    PMID: 32072226 DOI: 10.1007/s00421-020-04322-8
    PURPOSE: Recent studies have determined that ambient humidity plays a more important role in aerobic performance than dry-bulb temperature does in warm environments; however, no studies have kept humidity constant and independently manipulated temperature. Therefore, the purpose of this study was to determine the contribution of dry-bulb temperature, when vapor pressure was matched, on the thermoregulatory, perceptual and performance responses to a 30-min cycling work trial.

    METHODS: Fourteen trained male cyclists (age: 32 ± 12 year; height: 178 ± 6 cm; mass: 76 ± 9 kg; [Formula: see text]: 59 ± 9 mL kg-1 min-1; body surface area: 1.93 ± 0.12 m2; peak power output: 393 ± 53 W) volunteered, and underwent 1 exercise bout in moderate heat (MOD: 34.9 ± 0.2 °C, 50.1 ± 1.1% relative humidity) and 1 in mild heat (MILD: 29.2 ± 0.2 °C, 69.4 ± 0.9% relative humidity) matched for vapor pressure (2.8 ± 0.1 kPa), with trials counterbalanced.

    RESULTS: Despite a higher weighted mean skin temperature during MOD (36.3 ± 0.5 vs. 34.5 ± 0.6 °C, p 

  8. Zheng H, Badenhorst CE, Lei TH, Che Muhamed AM, Liao YH, Amano T, et al.
    J Appl Physiol (1985), 2021 11 01;131(5):1496-1504.
    PMID: 34590913 DOI: 10.1152/japplphysiol.00342.2021
    Measurement error(s) of exercise tests for women are severely lacking in the literature. The purpose of this investigation was to 1) determine whether ovulatory status or ambient environment were moderating variables when completing a 30-min self-paced work trial and 2) provide test-retest norms specific to athletic women. A retrospective analysis of three heat stress studies was completed using 33 female participants (31 ± 9 yr, 54 ± 10 mL·min-1·kg-1) that yielded 130 separate trials. Participants were classified as ovulatory (n = 19), anovulatory (n = 4), and oral contraceptive pill users (n = 10). Participants completed trials ∼2 wk apart in their (quasi-) early follicular and midluteal phases in two of moderate (1.3 ± 0.1 kPa, 20.5 ± 0.5°C, 18 trials), warm-dry (2.2 ± 0.2 kPa, 34.1 ± 0.2°C, 46 trials), or warm-humid (3.4 ± 0.1 kPa, 30.2 ± 1.1°C, 66 trials) environments. We quantified reliability using limits of agreement, intraclass correlation coefficient (ICC), standard error of measurement (SEM), and coefficient of variation (CV). Test-retest reliability was high, clinically valid (ICC = 0.90, P < 0.01), and acceptable with a mean CV of 4.7%, SEM of 3.8 kJ (2.1 W), and reliable bias of -2.1 kJ (-1.2 W). The various ovulatory status and contrasting ambient conditions had no appreciable effect on reliability. These results indicate that athletic women can perform 30-min self-paced work trials ∼2 wk apart with an acceptable and low variability irrespective of their hormonal status or heat-stressful environments.NEW & NOTEWORTHY This study highlights that aerobically trained women perform 30-min self-paced work trials ∼2 wk apart with acceptably low variability and their hormonal/ovulatory status and the introduction of greater ambient heat and humidity do not moderate this measurement error.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links