Displaying all 2 publications

Abstract:
Sort:
  1. Schratz A, Pineda MF, Reforma LG, Fox NM, Le Anh T, Tommaso Cavalli-Sforza L, et al.
    Adv Parasitol, 2010;72:79-107.
    PMID: 20624529 DOI: 10.1016/S0065-308X(10)72004-2
    Ethnic minority groups (EMGs) are often subject to exclusion, marginalization and poverty. These characteristics render them particularly vulnerable to neglected diseases, a diverse group of diseases that comprise bacteria, ecto-parasites, fungi, helminths and viruses. Despite the health policy relevance, only little is known of the epidemiological profile of neglected diseases among EMGs. We reviewed country data from Australia, Cambodia, Lao People's Democratic Republic, Malaysia, the Philippines and Vietnam and found several overlaps between regions with high proportions of EMG population and high prevalence rates of neglected diseases (infections with soil-transmitted helminths, filarial worms, schistosomes, food-borne trematodes and cestodes). While the links are not always clearly evident and it is impossible to establish correlations among highly aggregated data without control variables-such as environmental factors-there appear indeed to be important linkages between EMGs, socio-economic status and prevalence of neglected diseases. Some determinants under consideration are lack of access to health care and general health status, poverty and social marginalization, as well as education and literacy. Further research is needed to deepen the understanding of these linkages and to determine their public health and socio-economic significance. In particular, there is a need for more data from all countries in the Western Pacific Region that is disaggregated below the provincial level. Selected case studies that incorporate other control variables-such as risk factors from the physical environment-might be useful to inform policy makers about the feasibility of prevention and control interventions that are targeted at high-risk EMGs.
  2. Trusch F, Loebach L, Wawra S, Durward E, Wuensch A, Iberahim NA, et al.
    Nat Commun, 2018 06 14;9(1):2347.
    PMID: 29904064 DOI: 10.1038/s41467-018-04796-3
    The animal-pathogenic oomycete Saprolegnia parasitica causes serious losses in aquaculture by infecting and killing freshwater fish. Like plant-pathogenic oomycetes, S. parasitica employs similar infection structures and secretes effector proteins that translocate into host cells to manipulate the host. Here, we show that the host-targeting protein SpHtp3 enters fish cells in a pathogen-independent manner. This uptake process is guided by a gp96-like receptor and can be inhibited by supramolecular tweezers. The C-terminus of SpHtp3 (containing the amino acid sequence YKARK), and not the N-terminal RxLR motif, is responsible for the uptake into host cells. Following translocation, SpHtp3 is released from vesicles into the cytoplasm by another host-targeting protein where it degrades nucleic acids. The effector translocation mechanism described here, is potentially also relevant for other pathogen-host interactions as gp96 is found in both animals and plants.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links