Displaying all 2 publications

Abstract:
Sort:
  1. Yazdani A, Varathan KD, Chiam YK, Malik AW, Wan Ahmad WA
    BMC Med Inform Decis Mak, 2021 06 21;21(1):194.
    PMID: 34154576 DOI: 10.1186/s12911-021-01527-5
    BACKGROUND: Cardiovascular disease is the leading cause of death in many countries. Physicians often diagnose cardiovascular disease based on current clinical tests and previous experience of diagnosing patients with similar symptoms. Patients who suffer from heart disease require quick diagnosis, early treatment and constant observations. To address their needs, many data mining approaches have been used in the past in diagnosing and predicting heart diseases. Previous research was also focused on identifying the significant contributing features to heart disease prediction, however, less importance was given to identifying the strength of these features.

    METHOD: This paper is motivated by the gap in the literature, thus proposes an algorithm that measures the strength of the significant features that contribute to heart disease prediction. The study is aimed at predicting heart disease based on the scores of significant features using Weighted Associative Rule Mining.

    RESULTS: A set of important feature scores and rules were identified in diagnosing heart disease and cardiologists were consulted to confirm the validity of these rules. The experiments performed on the UCI open dataset, widely used for heart disease research yielded the highest confidence score of 98% in predicting heart disease.

    CONCLUSION: This study managed to provide a significant contribution in computing the strength scores with significant predictors in heart disease prediction. From the evaluation results, we obtained important rules and achieved highest confidence score by utilizing the computed strength scores of significant predictors on Weighted Associative Rule Mining in predicting heart disease.

  2. Najam M, Rasool RU, Ahmad HF, Ashraf U, Malik AW
    Biomed Res Int, 2019;2019:7074387.
    PMID: 31111064 DOI: 10.1155/2019/7074387
    Storing and processing of large DNA sequences has always been a major problem due to increasing volume of DNA sequence data. However, a number of solutions have been proposed but they require significant computation and memory. Therefore, an efficient storage and pattern matching solution is required for DNA sequencing data. Bloom filters (BFs) represent an efficient data structure, which is mostly used in the domain of bioinformatics for classification of DNA sequences. In this paper, we explore more dimensions where BFs can be used other than classification. A proposed solution is based on Multiple Bloom Filters (MBFs) that finds all the locations and number of repetitions of the specified pattern inside a DNA sequence. Both of these factors are extremely important in determining the type and intensity of any disease. This paper serves as a first effort towards optimizing the search for location and frequency of substrings in DNA sequences using MBFs. We expect that further optimizations in the proposed solution can bring remarkable results as this paper presents a proof of concept implementation for a given set of data using proposed MBFs technique. Performance evaluation shows improved accuracy and time efficiency of the proposed approach.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links