Displaying all 2 publications

  1. Loh KW, Shaz N, Singh S, Malliga Raman M, Balaji Raghavendran HR, Kamarul T
    PMID: 34182614 DOI: 10.1515/jbcpp-2020-0320
    OBJECTIVES: Primary Osteoarthritis (OA) is a disease of progressive joints degeneration due to idiopathic causes. Recent evidence showed a positive relationship between OA and metabolic syndrome. This pilot study aimed to assess the baseline level of pro and anti-inflammatory cytokines in OA patients with or without Diabetic Mellitus (DM) and assess the effect of hydrogen peroxide (H2O2) in cytokine production.

    METHODS: Patients with primary hip and knee OA were recruited, and 3 mL of bone marrow was harvested during joint replacement surgery. Bone marrow stromal cells (BMSC) was isolated and cultured in a culture flask for three passages. Later experiment was then sub-cultured in a well plate labeled as the control group and H2O2 (0.1 mM) treated group. ProcartaPlex® Multiplex Immunoassay was performed to measure cytokine levels produced by the BMSC at 0 h, as well as 72 h.

    RESULTS: Cytokines such as tumor necrosis factor-alpha, interleukin (IL)-6, IL-8, and IL-1β generally exhibited higher cytokine levels in subjects with DM than in nonDM subjects at 0 and 72 h. For IL-17, its expression was similar in nonDM and DM groups at 0 and 72 h. Cytokine IL-10 showed no significant difference in both the groups while DM and nonDM groups treated with H2O2 showed decreased IL-4 levels compared to control groups at 72 h. Bone marrow cells from DM-OA are more vulnerable to chemical insult and are associated with higher levels of proinflammatory cytokines production and lower IL-4 level production.

    CONCLUSIONS: This study provides a clue that management of OA with co-morbidity like DM needs future studies.

  2. Genasan K, Mehrali M, Veerappan T, Talebian S, Malliga Raman M, Singh S, et al.
    Polymers (Basel), 2021 Sep 22;13(19).
    PMID: 34641027 DOI: 10.3390/polym13193211
    Gellan-chitosan (GC) incorporated with CS: 0% (GC-0 CS), 10% (GC-10 CS), 20% (GC-20 CS) or 40% (GC-40 CS) w/w was prepared using freeze-drying method to investigate its physicochemical, biocompatible, and osteoinductive properties in human bone-marrow mesenchymal stromal cells (hBMSCs). The composition of different groups was reflected in physicochemical analyses performed using BET, FTIR, and XRD. The SEM micrographs revealed excellent hBMSCs attachment in GC-40 CS. The Alamar Blue assay indicated an increased proliferation and viability of seeded hBMSCs in all groups on day 21 as compared with day 0. The hBMSCs seeded in GC-40 CS indicated osteogenic differentiation based on an amplified alkaline-phosphatase release on day 7 and 14 as compared with day 0. These cells supported bone mineralization on GC-40 CS based on Alizarin-Red assay on day 21 as compared with day 7 and increased their osteogenic gene expression (RUNX2, ALP, BGLAP, BMP, and Osteonectin) on day 21. The GC-40 CS-seeded hBMSCs initiated their osteogenic differentiation on day 7 as compared with counterparts based on an increased expression of type-1 collagen and BMP2 in immunocytochemistry analysis. In conclusion, the incorporation of 40% (w/w) calcium silicate in gellan-chitosan showed osteoinduction potential in hBMSCs, making it a potential biomaterial to treat critical bone defects.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links