The 5-acetyl-2-aryl-6-hydroxybenzo[b]furans 2a-h have been evaluated through in vitro enzymatic assay against targets which are linked to type 2 diabetes (T2D), namely, α-glucosidase, protein tyrosine phosphatase 1B (PTP1B) and β-secretase. These compounds have also been evaluated for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging method. The most active compounds against α-glucosidase and/or PTP1B, namely, 4-fluorophenyl 2c, 4-methoxyphenyl 2g and 3,5-dimethoxyphenyl substituted 2h derivatives were also evaluated for potential anti-inflammatory properties against cyclooxygenase-2 activity. The Lineweaver-Burk and Dixon plots were used to determine the type of inhibition on compounds 2c and 2h against α-glucosidase and PTP1B receptors. The interactions were investigated in modelled complexes against α-glucosidase and PTP1B via molecular docking.
A series of 2-arylbenzo[b]furan-appended 4-aminoquinazoline hybrids were prepared and evaluated for cytotoxicity in vitro against the human lung cancer (A549), colorectal adenocarcinoma (Caco-2), hepatocellular carcinoma (C3A) and cervical cancer (HeLa) cell lines. Compounds 10d and 10j exhibited significant cytotoxicity against the C3A and Caco-2 cell lines and induced apoptosis in these cell lines. Likewise, compounds 10d and 10e exhibited significant inhibitory activity towards epidermal growth factor receptor-tyrosine kinase phosphorylation (IC50 values of 29.3 nM and 31.1 nM, respectively) against Gefitinib (IC50 = 33.1 nM). Molecular docking of compounds 10 into EGFR-TK active site suggests that they bind to the region of EGFR like Gefitinib does. [Formula: see text].