Despite its powerful influence on student learning, assessment feedback has received relatively less attention in translation education. The mainstream assessment practices in translation education have relied mainly on a static approach to translation competence. The consequences of a static approach include a partial representation of translation competence development and a deficit view of students and their learning. Alternatively, this paper argues for an ecological approach to contextualize assessment feedback in translation education. The ecological approach emphasizes the spatial and temporal context for translation assessment. While detailed contextual information is essential to the ecological assessment approach, assessing translation performance across tasks and time is a considerable challenge. In response to such a challenge, this conceptual paper proposes a corpus-assisted approach to translation assessment. It discusses how a longitudinal student translation corpus can be developed to assist ecological assessment feedback on translation performance. A project in progress based on a translation education program is reported as a case in point for illustrative purposes. The paper has suggested ways forward for future assessment feedback practice and research in translation education.
Methods for in silico screening of large databases of molecules increasingly complement and replace experimental techniques to discover novel compounds to combat diseases. As these techniques become more complex and computationally costly we are faced with an increasing problem to provide the research community of life sciences with a convenient tool for high-throughput virtual screening on distributed computing resources.
Blackberry polysaccharides with certain molecular weight distribution have good bioactivity. In this research, type 2 diabetes mice were used to investigate the hypoglycemic effect of blackberry polysaccharides with three different molecular weights, BBP (603.59 kDa), BBP-8 (408.13 kDa) and BBP-24 (247.62 kDa), through gut microbiota modulation. Blackberry polysaccharides exhibited stronger hypoglycemic activity after degradation, and the FBG of BBP, BBP-8 and BBP-24 was reduced to 20.21 ± 4.17 mmol L-1, 20.6 ± 7.23 mmol L-1 and 17.32 ± 6.59 mmol L-1 and OGTT-AUC was reduced by 14.76%, 19.80% and 25.04%, respectively, after 8-week intervention. Furthermore, 16S rRNA gene sequencing analysis indicated that BBP, BBP-8 and BBP-24 could reshape the diversity and composition of the gut microbiota. From 0 to 4 weeks, the F/B of BBP, BBP-8 and BBP-24 reduced by 56.44%, 47.19% and 62.04%, reaching 3.39, 6.54, and 3.11 in the 8th week, respectively, which suggested the faster utilization of BBP-24. Moreover, the intervention the three blackberry polysaccharides increased the relative abundance of the targeted beneficial bacteria Oscillospira and Bacteroidaceae Bacteroides and decreased the relative abundance of the pathogenic bacterium Allobaculum. In general, the result demonstrated that blackberry polysaccharides with a lower molecular weight are more easily fermented, making the theoretical basis for the development of blackberry polysaccharides as a probiotic food to rapidly regulate intestinal flora for type 2 diabetes.