Displaying all 2 publications

Abstract:
Sort:
  1. Mannan S, Fakhruĺ-Razi A, Alam MZ
    J Environ Sci (China), 2007;19(1):23-8.
    PMID: 17913149
    The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33 degrees C, agitation of 150 r/min, and pH of 5 were chosen as center point from the previous study of fungal treatment. The experimental data on chemical oxygen demand (COD) removal (%) were fitted into a quadratic polynomial model using multiple regression analysis. The optimum process conditions were determined by analyzing response surface three-dimensional surface plot and contour plot and by solving the regression model equation with Design Expert software. Box-Behnken design technique under RSM was used to optimize their interactions, which showed that an incubation temperature of 32.5 degrees C, agitation of 105 r/min, and pH of 5.5 were the best conditions. Under these conditions, the maximum predicted yield of COD removal was 98.43%. These optimum conditions were used to evaluate the trail experiment, and the maximum yield of COD removal was recorded as 98.5%.
  2. Mannan S, Fakhru'l-Razi A, Alam MZ
    Water Res, 2005 Aug;39(13):2935-43.
    PMID: 16000208
    The present study was designed to evaluate the potential of microbial adaptation and its affinity to biodegradation as well as bioconversion of soluble/insoluble (organic) substances of domestic wastewater treatment plant (DWTP) sludge (activated domestic sludge) under natural/non-sterilized conditions. The two filamentous fungi, Penicillium corylophilum (WWZP1003) and Aspergillus niger (SCahmA103) were used to achieve the objectives. It was observed that P. corylophilum (WWZP1003) was the better strain compared to A. niger (SCahmA103) for the bioconversion of domestic activated sludge through adaptation. The visual observation in plate culture showed that about 95-98% of cultured microbes (P. corylophilum and A. niger) dominated in treated sludge after 2 days of treatment. In this study, it was also found that the P. corylophilum was capable of removing 94.40% of COD and 98.95% of turbidity of filtrate with minimum dose of inoculum of 10% v/v in DWTP sludge (1% w/w). The pH level was lower (acidic condition) in the fungal treatment and maximum reduction of COD and turbidity was observed (at lower pH). The results for specific resistance to filtration (SRF) showed that the fungi played a great role in enhancing the dewaterability and filterability. In particular, the strain Penicillium had a more significant capability (than A. niger) of reducing 93.20% of SRF compared to the uninoculated sample. Effective results were observed by using fungal inoculum after 2 days of treatment. The developed LSB process is a new biotechnological approach for sludge management strategy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links