A search for new physics in events with a Z boson produced in association with large missing transverse momentum at the LHC is presented. The search is based on the 2016 data sample of proton-proton collisions recorded with the CMS experiment at s = 13 TeV , corresponding to an integrated luminosity of 35.9 fb - 1 . The results of this search are interpreted in terms of a simplified model of dark matter production via spin-0 or spin-1 mediators, a scenario with a standard-model-like Higgs boson produced in association with the Z boson and decaying invisibly, a model of unparticle production, and a model with large extra spatial dimensions. No significant deviations from the background expectations are found, and limits are set on relevant model parameters, significantly extending the results previously achieved in this channel.
Four-lepton production in proton-proton collisions, p p → ( Z / γ ∗ ) ( Z / γ ∗ ) → 4 ℓ , where ℓ = e or μ , is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb - 1 . The ZZ production cross section, σ ( p p → Z Z ) = 17.2 ± 0.5 (stat) ± 0.7 (syst) ± 0.4 (theo) ± 0.4 (lumi) pb , measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60 < m ℓ + ℓ - < 120 GeV , is consistent with standard model predictions. Differential cross sections are measured and are well described by the theoretical predictions. The Z boson branching fraction to four leptons is measured to be B ( Z → 4 ℓ ) = 4 . 83 - 0.22 + 0.23 ( s t a t ) - 0.29 + 0.32 ( s y s t ) ± 0.08 ( t h e o ) ± 0.12 ( l u m i ) × 10 - 6 for events with a four-lepton invariant mass in the range 80 < m 4 ℓ < 100 GeV and a dilepton mass m ℓ ℓ > 4 GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ γ couplings at 95% confidence level: - 0.0012 < f 4 Z < 0.0010 , - 0.0010 < f 5 Z < 0.0013 , - 0.0012 < f 4 γ < 0.0013 , - 0.0012 < f 5 γ < 0.0013 .
Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented. The analysis uses the LHC proton-proton collision data set recorded with the CMS detector in 2016 at s = 13 Te , corresponding to an integrated luminosity of 35.9 fb - 1 . The combination is based on analyses targeting the five main Higgs boson production mechanisms (gluon fusion, vector boson fusion, and associated production with a W or Z boson, or a top quark-antiquark pair) and the following decay modes: H → γ γ , Z Z , W W , τ τ , b b , and μ μ . Searches for invisible Higgs boson decays are also considered. The best-fit ratio of the signal yield to the standard model expectation is measured to be μ = 1.17 ± 0.10 , assuming a Higgs boson mass of 125.09 Ge . Additional results are given for various assumptions on the scaling behavior of the production and decay modes, including generic parametrizations based on ratios of cross sections and branching fractions or couplings. The results are compatible with the standard model predictions in all parametrizations considered. In addition, constraints are placed on various two Higgs doublet models.
A search for heavy resonances with masses above 1 TeV , decaying to final states containing a vector boson and a Higgs boson, is presented. The search considers hadronic decays of the vector boson, and Higgs boson decays to b quarks. The decay products are highly boosted, and each collimated pair of quarks is reconstructed as a single, massive jet. The analysis is performed using a data sample collected in 2016 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV , corresponding to an integrated luminosity of 35.9 fb - 1 . The data are consistent with the background expectation and are used to place limits on the parameters of a theoretical model with a heavy vector triplet. In the benchmark scenario with mass-degenerate W ' and Z ' bosons decaying predominantly to pairs of standard model bosons, for the first time heavy resonances for masses as high as 3.3 TeV are excluded at 95% confidence level, setting the most stringent constraints to date on such states decaying into a vector boson and a Higgs boson.