Displaying all 3 publications

Abstract:
Sort:
  1. Sheng B, Guan Z, Lim LL, Jiang Z, Mathioudakis N, Li J, et al.
    Sci Bull (Beijing), 2024 Jan 04.
    PMID: 38220476 DOI: 10.1016/j.scib.2024.01.004
  2. Ahmad A, Lim LL, Morieri ML, Tam CH, Cheng F, Chikowore T, et al.
    Commun Med (Lond), 2024 Jan 22;4(1):11.
    PMID: 38253823 DOI: 10.1038/s43856-023-00429-z
    BACKGROUND: Precision medicine has the potential to improve cardiovascular disease (CVD) risk prediction in individuals with Type 2 diabetes (T2D).

    METHODS: We conducted a systematic review and meta-analysis of longitudinal studies to identify potentially novel prognostic factors that may improve CVD risk prediction in T2D. Out of 9380 studies identified, 416 studies met inclusion criteria. Outcomes were reported for 321 biomarker studies, 48 genetic marker studies, and 47 risk score/model studies.

    RESULTS: Out of all evaluated biomarkers, only 13 showed improvement in prediction performance. Results of pooled meta-analyses, non-pooled analyses, and assessments of improvement in prediction performance and risk of bias, yielded the highest predictive utility for N-terminal pro b-type natriuretic peptide (NT-proBNP) (high-evidence), troponin-T (TnT) (moderate-evidence), triglyceride-glucose (TyG) index (moderate-evidence), Genetic Risk Score for Coronary Heart Disease (GRS-CHD) (moderate-evidence); moderate predictive utility for coronary computed tomography angiography (low-evidence), single-photon emission computed tomography (low-evidence), pulse wave velocity (moderate-evidence); and low predictive utility for C-reactive protein (moderate-evidence), coronary artery calcium score (low-evidence), galectin-3 (low-evidence), troponin-I (low-evidence), carotid plaque (low-evidence), and growth differentiation factor-15 (low-evidence). Risk scores showed modest discrimination, with lower performance in populations different from the original development cohort.

    CONCLUSIONS: Despite high interest in this topic, very few studies conducted rigorous analyses to demonstrate incremental predictive utility beyond established CVD risk factors for T2D. The most promising markers identified were NT-proBNP, TnT, TyG and GRS-CHD, with the highest strength of evidence for NT-proBNP. Further research is needed to determine their clinical utility in risk stratification and management of CVD in T2D.

  3. Tobias DK, Merino J, Ahmad A, Aiken C, Benham JL, Bodhini D, et al.
    Nat Med, 2023 Oct;29(10):2438-2457.
    PMID: 37794253 DOI: 10.1038/s41591-023-02502-5
    Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links