Displaying all 2 publications

Abstract:
Sort:
  1. Saw SN, Biswas A, Mattar CNZ, Lee HK, Yap CH
    Prenat Diagn, 2021 Mar;41(4):505-516.
    PMID: 33462877 DOI: 10.1002/pd.5903
    OBJECTIVE: To investigate the performance of the machine learning (ML) model in predicting small-for-gestational-age (SGA) at birth, using second-trimester data.

    METHODS: Retrospective data of 347 patients, consisting of maternal demographics and ultrasound parameters collected between the 20th and 25th gestational weeks, were studied. ML models were applied to different combinations of the parameters to predict SGA and severe SGA at birth (defined as 10th and third centile birth weight).

    RESULTS: Using second-trimester measurements, ML models achieved an accuracy of 70% and 73% in predicting SGA and severe SGA whereas clinical guidelines had accuracies of 64% and 48%. Uterine PI (Ut PI) was found to be an important predictor, corroborating with existing literature, but surprisingly, so was nuchal fold thickness (NF). Logistic regression showed that Ut PI and NF were significant predictors and statistical comparisons showed that these parameters were significantly different in disease. Further, including NF was found to improve ML model performance, and vice versa.

    CONCLUSION: ML could potentially improve the prediction of SGA at birth from second-trimester measurements, and demonstrated reduced NF to be an important predictor. Early prediction of SGA allows closer clinical monitoring, which provides an opportunity to discover any underlying diseases associated with SGA.

  2. Deng J, Naresh Sethi NSA, Ahmad Kamar A, Saaid R, Loo CK, Mattar CNZ, et al.
    Prenat Diagn, 2025 Jan 16.
    PMID: 39817730 DOI: 10.1002/pd.6748
    OBJECTIVE: The first objective is to develop a nuchal thickness reference chart. The second objective is to compare rule-based algorithms and machine learning models in predicting small-for-gestational-age infants.

    METHOD: This retrospective study involved singleton pregnancies at University Malaya Medical Centre, Malaysia, developed a nuchal thickness chart and evaluated its predictive value for small-for-gestational-age using Malaysian and Singapore cohorts. Predictive performance using conjunctive (AND)/disjunctive (OR) rule-based algorithms was assessed. Seven machine learning models were trained on Malaysia data and evaluated on both Malaysia and Singapore cohorts.

    RESULTS: 5519 samples were collected from the University Malaya Medical Centre. Small-for-gestational-age infants exhibit significantly lower nuchal thickness (small-for-gestational-age: 4.57 [1.04] mm, appropriate-for-gestational-age: 4.86 [1.06] mm, p 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links