Displaying all 2 publications

Abstract:
Sort:
  1. Loh ZW, Mohd Zaid MH, Matori KA, Kechik MMA, Fen YW, Mayzan MZH, et al.
    J Mech Behav Biomed Mater, 2023 Jul;143:105889.
    PMID: 37150138 DOI: 10.1016/j.jmbbm.2023.105889
    This work investigates the role of sintering temperature on bioactive glass-ceramics derived from the new composition CaO-P2O5-Na2O-B2O3-SiO2 glass system. The sintering behaviour of the samples' physical, structural, and mechanical properties is highlighted in this study. The experimental results indicated that the sintering process improved the crystallization and hardness of the final product. Results from XRD and FTIR showed the existence of carbonate apatite, pseudo-wollastonite, and wollastonite phases. From the results, the bioglass-ceramics sintered at 700 °C obtained the highest densification and optimum mechanical results. It had the value of 5.34 ± 0.21 GPa regarding microhardness and 2.99 ± 0.24 MPa m1/2 concerning fracture toughness, which falls in the range of the human enamel. Also, the sintered samples maintained their bioactivity and biodegradability after being tested in the PBS medium. The bioactivity does not affect but slows down the apatite formation rate. Overall results promoted the novel bioglass-ceramics as a candidate material for dental application.
  2. Jameel MH, Sufi Bin Roslan M, Bin Mayzan MZH, Agam MAB, Zaki ZI, Fallatah AM
    R Soc Open Sci, 2023 Jul;10(7):230503.
    PMID: 37476508 DOI: 10.1098/rsos.230503
    In the present research, the structural, electronic and optical properties of transition metal dichalcogenide-doped transition metal oxides MoS2-doped-V2O5 with various doping concentrations (x = 1-3%) of MoS2 atoms are studied by using first principles calculation. The generalized gradient approximation Perdew-Burke-Ernzerhof simulation approach is used to investigate the energy bandgap (Eg) of orthorhombic structures. We examined the energy bandgap (Eg) decrement from 2.76 to 1.30 eV with various doping (x = 1-3%) of molybdenum disulfide (MoS2) atoms. The bandgap nature shows that the material is a well-known direct bandgap semiconductor. MoS2 doping (x = 1-3%) atoms in pentoxide (V2O5) creates the extra gamma active states which contribute to the formation of conduction and valance bands. MoS2-doped-V2O5 composite is a proficient photocatalyst, has a large surface area for absorption of light, decreases the electron-hole pairs recombination rate and increases the charge transport. A comprehensive study of optical conductivity reveals that strong peaks of MoS2-doped-V2O5 increase in ultraviolet spectrum region with small shifts at larger energy bands through increment doping x = 1-3% atoms of MoS2. A significant decrement was found in the reflectivity due to the decrement in the bandgap with doping. The optical properties significantly increased by the decrement of bandgap (Eg). Two-dimensional MoS2-doped-V2O5 composite has high energy absorption, optical conductivity and refractive index, and is an appropriate material for photocatalytic applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links