METHODS: Published population pharmacokinetic models and the Australasian Neonatal Medicines Formulary were used to simulate antimicrobial concentration-time profiles in a virtual neonate population. Laboratory quality assurance data were used to quantify analytical variation in antimicrobial measurement methods used in clinical practice. Guideline-informed dosing recommendations based on drug concentrations were applied to compare the impact of analytical variation and nonanalytical factors on antimicrobial dosing.
RESULTS: Analytical variation caused differences in subsequent guideline-informed dosing recommendations in 9.3-12.1% (amikacin), 16.2-19.0% (tobramycin), 12.2-45.8% (gentamicin), and 9.6-19.5% (vancomycin) of neonates. For vancomycin, inaccuracies in drug administration time (45.6%), use of non-trough concentrations (44.7%), within-subject biological variation (38.2%), and dosing errors (27.5%) were predicted to result in more dosing discrepancies than analytical variation (12.5%). Using current analytical performance specifications, tolerated dosing discrepancies would be up to 14.8% (aminoglycosides) and 23.7% (vancomycin).
CONCLUSIONS: Although analytical variation can influence neonatal antimicrobial dosing recommendations, nonanalytical factors are more influential. These result in substantial variation in subsequent dosing of antimicrobials, risking inadvertent under- or overexposure. Harmonization of measurement methods and improved patient management systems may reduce the impact of analytical and nonanalytical factors on neonatal antimicrobial dosing.