Single-node leafy stem cuttings of Shorea leprosula Miq. were subjected to a high, intermediate or low irradiance treatment for 16 weeks in an enclosed mist propagation system. Before rooting, maximum photosynthesis of the cuttings occurred at an irradiance of 400 micro mol m(-2) s(-1). Although none of the irradiance treatments affected the number of roots produced per cutting, the numbers of cuttings that formed roots were 50 and 30% in the high irradiance (diurnal range of 0-658 micro mol m(-2) s(-1)) and low irradiance (diurnal range of 0-98 micro mol m(-2) s(-1)) treatments, respectively, compared with 62% in the intermediate irradiance treatment (diurnal range of 0-360 micro mol m(-2) s(-1)). Low rooting frequency of cuttings in the high irradiance treatment was associated with water deficits (maximum leaf-to-air vapor pressure deficit (VPD) = 3.6 kPa), whereas cuttings in the low irradiance treatment had a low rooting frequency because they were below the light compensation point most of the time. In the intermediate irradiance treatment, cuttings withstood a daily maximum VPD of 1-2 kPa and recovered overnight from the previous day's deficit, as indicated by higher relative water content (RWC) and stomatal conductance (g(s)) in the morning than in the previous afternoon and evening. Higher RWC and g(s) of cuttings in all treatments on Days 14 and 21 compared with Day 8 probably indicated recovery from water deficit following severance and insertion of the cuttings in rooting medium. There were negative relationships between stem volume of cuttings and both number of cuttings that rooted and number of roots per cutting.