Displaying all 3 publications

Abstract:
Sort:
  1. Rahman MB, Noor-E-Ashrafi, Miah MH, Khandaker MU, Islam MA
    RSC Adv, 2023 Jun 05;13(25):17130-17142.
    PMID: 37293469 DOI: 10.1039/d3ra02170j
    The first and foremost intent of our present study is to design a perovskite solar cell favorable for realistic applications with excellent efficiency by utilizing SCAPS-1D. To ensure this motive, the detection of a compatible electron transport layer (ETL) and hole transport layer (HTL) for the suggested mixed perovskite layer entitled FA0.85Cs0.15Pb (I0.85Br0.15)3 (MPL) was carried out, employing diver ETLs such as SnO2, PCBM, TiO2, ZnO, CdS, WO3 and WS2, and HTLs such as Spiro-OMeTAD, P3HT, CuO, Cu2O, CuI, and MoO3. The attained simulated results, especially for FTO/SnO2/FA0.85Cs0.15Pb (I0.85Br0.15)3/Spiro-OMeTAD/Au, have been authenticated by the theoretical and experimental data, which endorse our simulation process. From the detailed numerical analysis, WS2 and MoO3 were chosen as ETL and HTL, respectively, for designing the proposed novel structure of FA0.85Cs0.15Pb (I0.85Br0.15)3-based perovskite solar cells. With the inspection of several parameters such as variation of the thickness of FA0.85Cs0.15Pb (I0.85Br0.15)3, WS2, and MoO3 including different defect densities, the novel proposed structure has been optimized, and a noteworthy efficiency of 23.39% was achieved with the photovoltaic parameters of VOC = 1.07 V, JSC = 21.83 mA cm-2, and FF = 73.41%. The dark J-V analysis unraveled the reasons for the excellent photovoltaic parameters of our optimized structure. Furthermore, the scrutinizing of QE, C-V, Mott-Schottky plot, and the impact of the hysteresis of the optimized structure was executed for further investigation. Our overall investigation disclosed the fact that the proposed novel structure (FTO/WS2/FA0.85Cs0.15Pb (I0.85Br0.15)3/MoO3/Au) can be attested as a supreme structure for perovskite solar cells with greater efficiency as well as admissible for practical purposes.
  2. Miah MH, Khandaker MU, Aminul Islam M, Nur-E-Alam M, Osman H, Ullah MH
    RSC Adv, 2024 Feb 21;14(10):6656-6698.
    PMID: 38390503 DOI: 10.1039/d4ra00433g
    Perovskite materials have attracted significant attention as innovative and efficient X-ray detectors owing to their unique properties compared to traditional X-ray detectors. Herein, chronologically, we present an in-depth analysis of X-ray detection technologies employing organic-inorganic hybrids (OIHs), all-inorganic and lead-free perovskite material-based single crystals (SCs), thin/thick films and wafers. Particularly, this review systematically scrutinizes the advancement of the diverse synthesis methods, structural modifications, and device architectures exploited to enhance the radiation sensing performance. In addition, a critical analysis of the crucial factors affecting the performance of the devices is also provided. Our findings revealed that the improvement from single crystallization techniques dominated the film and wafer growth techniques. The probable reason for this is that SC-based devices display a lower trap density, higher resistivity, large carrier mobility and lifetime compared to film- and wafer-based devices. Ultimately, devices with SCs showed outstanding sensitivity and the lowest detectable dose rate (LDDR). These results are superior to some traditional X-ray detectors such as amorphous selenium and CZT. In addition, the limited performance of film-based devices is attributed to the defect formation in the bulk film, surfaces, and grain boundaries. However, wafer-based devices showed the worst performance because of the formation of voids, which impede the movement of charge carriers. We also observed that by performing structural modification, various research groups achieved high-performance devices together with stability. Finally, by fusing the findings from diverse research works, we provide a valuable resource for researchers in the field of X-ray detection, imaging and materials science. Ultimately, this review will serve as a roadmap for directing the difficulties associated with perovskite materials in X-ray detection and imaging, proposing insights into the recent status, challenges, and promising directions for future research.
  3. Absar N, Abedin J, Rahman MM, Miah MH, Siddique N, Kamal M, et al.
    Life (Basel), 2021 Mar 27;11(4).
    PMID: 33801699 DOI: 10.3390/life11040282
    Considering the probable health risks due to radioactivity input via drinking tea, the concentrations of 226Ra, 232Th,40K and 137Cs radionuclides in the soil and the corresponding tea leaves of a large tea plantation were measured using high purity germanium (HPGe) γ-ray spectrometry. Different layers of soil and fresh tea leaf samples were collected from the Udalia Tea Estate (UTE) in the Fatickchari area of Chittagong, Bangladesh. The mean concentrations (in Bq/kg) of radionuclides in the studied soil samples were found to be 34 ± 9 to 45 ± 3 for 226Ra, 50 ± 13 to 63 ± 5 for 232Th, 245 ± 30 to 635 ± 35 for 40K and 3 ± 1 to 10 ± 1 for 137Cs, while the respective values in the corresponding tea leaf samples were 3.6 ± 0.7 to 5.7 ± 1.0, 2.4 ± 0.5 to 5.8 ± 0.9, 132 ± 25 to 258 ± 29 and <0.4. The mean transfer factors for 226Ra, 232Th and 40K from soil to tea leaves were calculated to be 0.12, 0.08 and 0.46, respectively, the complete range being 1.1 × 10-2 to 1.0, in accordance with IAEA values. Additionally, the most popularly consumed tea brands available in the Bangladeshi market were also analyzed and, with the exception of 40K, were found to have similar concentrations to the fresh tea leaves collected from the UTE. The committed effective dose via the consumption of tea was estimated to be low in comparison with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reference ingestion dose limit of 290 μSv/y. Current indicative tea consumption of 4 g/day/person shows an insignificant radiological risk to public health, while cumulative dietary exposures may not be entirely negligible, because the UNSCEAR reference dose limit is derived from total dietary exposures. This study suggests a periodic monitoring of radiation levels in tea leaves in seeking to ensure the safety of human health.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links