Displaying all 4 publications

Abstract:
Sort:
  1. Norfarhana AS, Ilyas RA, Ngadi N, Othman MHD, Misenan MSM, Norrrahim MNF
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128256.
    PMID: 38000585 DOI: 10.1016/j.ijbiomac.2023.128256
    The potential for the transformation of lignocellulosic biomass into valuable commodities is rapidly growing through an environmentally sustainable approach to harness its abundance, cost-effectiveness, biodegradability, and environmentally friendly nature. Ionic liquids (ILs) have received considerable and widespread attention as a promising solution for efficiently dissolving lignocellulosic biomass. The fact that ILs can act as solvents and reagents contributes to their widespread recognition. In particular, ILs are desirable because they are inert, non-toxic, non-flammable, miscible in water, recyclable, thermally and chemically stable, and have low melting points and outstanding ionic conductivity. With these characteristics, ILs can serve as a reliable replacement for traditional biomass conversion methods in various applications. Thus, this comprehensive analysis explores the conversion of lignocellulosic biomass using ILs, focusing on main components such as cellulose, hemicellulose, and lignin. In addition, the effect of multiple parameters on the separation of lignocellulosic biomass using ILs is discussed to emphasize their potential to produce high-value products from this abundant and renewable resource. This work contributes to the advancement of green technologies, offering a promising avenue for the future of biomass conversion and sustainable resource management.
  2. Norrrahim MNF, Huzaifah MRM, Farid MAA, Shazleen SS, Misenan MSM, Yasim-Anuar TAT, et al.
    Polymers (Basel), 2021 Aug 31;13(17).
    PMID: 34503011 DOI: 10.3390/polym13172971
    The utilization of lignocellulosic biomass in various applications has a promising potential as advanced technology progresses due to its renowned advantages as cheap and abundant feedstock. The main drawback in the utilization of this type of biomass is the essential requirement for the pretreatment process. The most common pretreatment process applied is chemical pretreatment. However, it is a non-eco-friendly process. Therefore, this review aims to bring into light several greener pretreatment processes as an alternative approach for the current chemical pretreatment. The main processes for each physical and biological pretreatment process are reviewed and highlighted. Additionally, recent advances in the effect of different non-chemical pretreatment approaches for the natural fibres are also critically discussed with a focus on bioproducts conversion.
  3. Norrrahim MNF, Mohd Kasim NA, Knight VF, Ong KK, Mohd Noor SA, Abdul Halim N, et al.
    Polymers (Basel), 2021 Sep 24;13(19).
    PMID: 34641067 DOI: 10.3390/polym13193249
    The wide availability and diversity of dangerous microbes poses a considerable problem for health professionals and in the development of new healthcare products. Numerous studies have been conducted to develop membrane filters that have antibacterial properties to solve this problem. Without proper protective filter equipment, healthcare providers, essential workers, and the general public are exposed to the risk of infection. A combination of nanotechnology and biosorption is expected to offer a new and greener approach to improve the usefulness of polysaccharides as an advanced membrane filtration material. Nanocellulose is among the emerging materials of this century and several studies have proven its use in filtering microbes. Its high specific surface area enables the adsorption of various microbial species, and its innate porosity can separate various molecules and retain microbial objects. Besides this, the presence of an abundant OH groups in nanocellulose grants its unique surface modification, which can increase its filtration efficiency through the formation of affinity interactions toward microbes. In this review, an update of the most relevant uses of nanocellulose as a new class of membrane filters against microbes is outlined. Key advancements in surface modifications of nanocellulose to enhance its rejection mechanism are also critically discussed. To the best of our knowledge, this is the first review focusing on the development of nanocellulose as a membrane filter against microbes.
  4. Ilyas RA, Zuhri MYM, Norrrahim MNF, Misenan MSM, Jenol MA, Samsudin SA, et al.
    Polymers (Basel), 2022 Jan 03;14(1).
    PMID: 35012203 DOI: 10.3390/polym14010182
    Recent developments within the topic of biomaterials has taken hold of researchers due to the mounting concern of current environmental pollution as well as scarcity resources. Amongst all compatible biomaterials, polycaprolactone (PCL) is deemed to be a great potential biomaterial, especially to the tissue engineering sector, due to its advantages, including its biocompatibility and low bioactivity exhibition. The commercialization of PCL is deemed as infant technology despite of all its advantages. This contributed to the disadvantages of PCL, including expensive, toxic, and complex. Therefore, the shift towards the utilization of PCL as an alternative biomaterial in the development of biocomposites has been exponentially increased in recent years. PCL-based biocomposites are unique and versatile technology equipped with several importance features. In addition, the understanding on the properties of PCL and its blend is vital as it is influenced by the application of biocomposites. The superior characteristics of PCL-based green and hybrid biocomposites has expanded their applications, such as in the biomedical field, as well as in tissue engineering and medical implants. Thus, this review is aimed to critically discuss the characteristics of PCL-based biocomposites, which cover each mechanical and thermal properties and their importance towards several applications. The emergence of nanomaterials as reinforcement agent in PCL-based biocomposites was also a tackled issue within this review. On the whole, recent developments of PCL as a potential biomaterial in recent applications is reviewed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links