Displaying all 3 publications

Abstract:
Sort:
  1. Omar H, Misman MA
    Carbon Balance Manag, 2018 Oct 19;13(1):19.
    PMID: 30341540 DOI: 10.1186/s13021-018-0108-2
    BACKGROUND: Malaysia typically suffers from frequent cloud cover, hindering spatially consistent reporting of deforestation and forest degradation, which limits the accurate reporting of carbon loss and CO2 emissions for reducing emission from deforestation and forest degradation (REDD+) intervention. This study proposed an approach for accurate and consistent measurements of biomass carbon and CO2 emissions using a single L-band synthetic aperture radar (SAR) sensor system. A time-series analysis of aboveground biomass (AGB) using the PALSAR and PALSAR-2 systems addressed a number of critical questions that have not been previously answered. A series of PALSAR and PALSAR-2 mosaics over the years 2007, 2008, 2009, 2010, 2015 and 2016 were used to (i) map the forest cover, (ii) quantify the rate of forest loss, (iii) establish prediction equations for AGB, (iv) quantify the changes of carbon stocks and (v) estimate CO2 emissions (and removal) in the dipterocarps forests of Peninsular Malaysia.

    RESULTS: This study found that the annual rate of deforestation within inland forests in Peninsular Malaysia was 0.38% year-1 and subsequently caused a carbon loss of approximately 9 million Mg C year-1, which is equal to emissions of 33 million Mg CO2 year-1, within the ten-year observation period. Spatially explicit maps of AGB over the dipterocarps forests in the entire Peninsular Malaysia were produced. The RMSE associated with the AGB estimation was approximately 117 Mg ha-1, which is equal to an error of 29.3% and thus an accuracy of approximately 70.7%.

    CONCLUSION: The PALSAR and PALSAR-2 systems offer a great opportunity for providing consistent data acquisition, cloud-free images and wall-to-wall coverage for monitoring since at least the past decade. We recommend the proposed method and findings of this study be considered for MRV in REDD+ implementation in Malaysia.

  2. Misman MA, Azura AR, Hamid ZA
    Carbohydr Polym, 2015 Sep 5;128:1-10.
    PMID: 26005134 DOI: 10.1016/j.carbpol.2015.04.004
    Starch-graft-acrylonitrile (ANS) is compounded with carboxylated nitrile butadiene rubber (XNBR) latex. The control XNBR and the ANS/XNBR latex films were prepared through a coagulant dipping process. The films were subjected to ageing and soil burial procedures. For the biodegradation experiment, the surface of the film was assessed after the 2nd, 4th and 8th week of soil burial. The ANS, XNBR, and ANS/XNBR colloidal stability were determined with a Malvern Zetasizer. For the dipped latex films, the mechanical, morphological and thermal properties were analyzed. The addition of ANS into the XNBR latex increased the stability of the colloidal dispersions, decreased the latex film tensile strength, but increased the elongation at break due to the bipolar interaction of the ANS and XNBR particles. The ANS/XNBR latex films aged faster than the control films while the morphological analysis showed the existence of a starch crystal region and the formation of microbial colonies on the surfaces of the films. Based on the TGA-DTA curves, a higher ΔT was observed for the ANS/XNBR latex films signifying high thermal energy needed for the film to thermally degrade.
  3. Ab Rahman MF, Rusli A, Misman MA, Rashid AA
    ACS Omega, 2020 Nov 24;5(46):30329-30335.
    PMID: 33251468 DOI: 10.1021/acsomega.0c04964
    With increased awareness on the importance of gloves arising from the COVID-19 pandemic, people are expected to continue using them even after the pandemic recedes. This scenario in a way increased the rubber solid waste disposal problem; therefore, the production of biodegradable gloves may be an option to overcome this problem. However, the need to study the shelf life of biodegradable gloves is crucial before commercialization. There are well-established models to address the failure properties of gloves as stated in the American Society for Testing and Material (ASTM) D7160. In this study, polysaccharide-based material-filled natural rubber latex (PFNRL) gloves, which are biodegradable gloves, were subjected to an accelerated aging process at different temperatures of 50-80 °C for 1-120 days. Prediction models based on Arrhenius and shift factors were used to estimate the shelf life of the PFNRL gloves. Based on the results obtained, the estimated time for the PFNRL gloves to retain 75% of their tensile strength at shelf temperature (30 °C) based on Arrhenius and shift factor models was 2.8 years. Verification on the activation energy based on the shift factor model indicated that the shelf life of PFNRL gloves is 2.9 years, which is only a 3.6% difference. The value obtained is aligned with the requirement in accordance with ASTM D7160, which states that only up to a maximum of 3 years' shelf life is allowed for the gloves under accelerated aging conditions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links