Lutetium-177 (DOTATATE) (177Lu; T1/2 6.7 days), a labelled β- and Auger-electron emitter, is widely used in treatment of neuroendocrine tumours. During performance of the procedure, staff and other patients can potentially receive significant doses in interception of the gamma emissions [113 keV (6.4%) and 208 keV (11%)] that are associated with the particle decays. While radiation protection and safety assessment are required in seeking to ensure practices comply with international guidelines, only limited published studies are available. The objectives of present study are to evaluate patient and occupational exposures, measuring ambient doses and estimating the radiation risk. The results, obtained from studies carried out in Riyadh over an 11 month period, at King Faisal Specialist Hospital and Research Center, concerned a total of 33 177Lu therapy patients. Patient exposures were estimated using a calibrated Victoreen 451P survey meter (Fluke Biomedical), for separations of 30 cm, 100 cm and 300 cm, also behind a bed shield that was used during hospitalization of the therapy patients. Occupational and ambient doses were also measured through use of calibrated thermoluminescent dosimeters and an automatic TLD reader (Harshaw 6600). The mean and range of administered activity (in MBq)) was 7115.2 ± 917.2 (4329-7955). The ambient dose at corridors outside of therapy isolation rooms was 1.2 mSv over the 11 month period, that at the nursing station was below the limit of detection and annual occupational doses were below the annual dose limit of 20 mSv. Special concern needs to be paid to comforters (carers) and family members during the early stage of radioisotope administration.
The dosimetry of small fields has become tremendously important with the advent of intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery, where small field segments or very small fields are used to treat tumors. With high dose gradients in the stereotactic radiosurgery or radiotherapy treatment, small field dosimetry becomes challenging due to the lack of lateral electronic equilibrium in the field, x-ray source occlusion, and detector volume averaging. Small volume and tissue-equivalent detectors are recommended to overcome the challenges. With the lack of a perfect radiation detector, studies on available detectors are ongoing with reasonable disagreement and uncertainties. The joint IAEA and AAPM international code of practice (CoP) for small field dosimetry, TRS 483 (Alfonso et al., 2017) provides guidelines and recommendations for the dosimetry of small static fields in external beam radiotherapy. The CoP provides a methodology for field output factor (FOF) measurements and use of field output correction factors for a series of small field detectors and strongly recommends additional measurements, data collection and verification for CyberKnife (CK) robotic stereotactic radiotherapy/radiosurgery system using the listed detectors and more new detectors so that the FOFs can be implemented clinically. The present investigation is focused on using 3D gel along with some other commercially available detectors for the measurement and verification of field output factors (FOFs) for the small fields available in the CK system. The FOF verification was performed through a comparison with published data and Monte Carlo simulation. The results of this study have proved the suitability of an in-house developed 3D polymer gel dosimeter, several commercially available detectors, and Gafchromic films as a part of small field dosimetric measurements for the CK system.