This study aimed to determine the potential pollinating agents of Ixora coccinae and Ruellia simplex at Universiti Malaysia Terengganu (UMT) campus based on the foraging activities of the flower visitors. The diurnal observations (0700 hr to 1800 hr) were conducted for a total of 144 hours and 96 hours for I. coccinae, for R. simplex respectively. The flower visitor activities (landing or hovering at the flowers) and the time spent at the flowers however were recorded for only the first 10 minutes of every hour between 0700 hr and 1000 hr for four days. A total of 383 flower visitations was recorded by 17 insect species and a bird species, the olive-backed sunbird (Cinnyris jugularis). For I. coccinae, the most common visitors were Apis cerana, Heterotrigona itama and Xylocopa confusa, in which all species were found to show only landing behaviour to forage at the flowers, and the time spent foraging at the flowers was not significantly different between the species (Kruskal-Wallis test, H = 1.323, df = 2, p = 0.055). For R. simplex, the most common visitors were A. cerana with 100% landing, and C. jugularis which recorded 80% landing and 20% hovering during their visits to the flowers. Between the two, A. cerana recorded significantly longer time spent at the flowers as compared to C. jugularis (Mann-Whitney test, U = 17.355, p < 0.001). Based on the visitation rate and feeding behaviour of the flower visitors, A. cerana, H. itama and X. confusa were the potential pollinating agents for I. coccinae while for R. simplex, A. cerana showed higher potential to be a pollinating agent as compared to C. jugularis. Therefore, this study highlighted the importance of recording the behaviour of each flower visitor to determine the relative contribution to the pollination success of the plant species visited.
Leptospirosis is a major zoonotic disease, especially in the tropics, and rodents were known to be carriers of this bacterium. There was established information on Leptospira prevalence among animal reservoirs in human-dominated landscapes from previous literature. However, there was very little focus given comparing the prevalence of Leptospira in a wide range of habitats. An extensive sampling of small mammals from various landscapes was carried out, covering oil palm plantations, paddy fields, recreational forests, semi-urbans, and wet markets in Peninsular Malaysia. This study aims to determine the prevalence of pathogenic Leptospira in a diversity of small mammals across different landscapes. Cage-trapping was deployed for small mammals' trappings, and the kidneys of captured individuals were extracted, for screening of pathogenic Leptospira by polymerase chain reaction (PCR) using LipL32 primer. Eight microhabitat parameters were measured at each study site. Out of 357 individuals captured, 21 (5.9%) were positive for pathogenic Leptospira of which recreational forest had the highest prevalence (8.8%) for landscape types, whereas Sundamys muelleri shows the highest prevalence (50%) among small mammals' species. Microhabitat analysis reveals that rubbish quantity (p
Leptospirosis, a widespread zoonotic disease, is a public health problem, especially in major urban centres, and is mainly reported to be associated with rats. In Malaysia, focus has been primarily given to the Leptospira prevalence in rodents per se, but there is lack of information on the microhabitat structure of the outbreak areas. We aimed to determine the diversity of small mammal species, microhabitat types, and their prevalence of pathogenic Leptospira spp. in the outbreak areas, which were categorized as urban, semi-urban, and recreational forests. Sampling involved deploying 100 to 300 live traps at each study site. Kidney samples were extracted from selected individuals, for screening of pathogenic Leptospira spp. by PCR. Out of 537 individuals from 15 small mammal species captured, 4 species were recorded from urban, 13 from semi-urban, and 11 from recreational forest sites. From 389 individuals screened, 58 were tested positive for pathogenic Leptospira. Recreational forests recorded the highest prevalence with 19.4% (n = 93), followed by urban, 16.6% (n = 163) and semi-urban sites with 9.8% (n = 133). Seven rodent species were tested positive for pathogenic Leptospira from all areas. R. norvegicus was found to harbour the highest prevalence (66.7%) in urban, R. rattus (53.8%) in semi-urban, whereby M. whiteheadi (44.4%) in recreational forest sites. Microhabitat analysis revealed that rubbish quantity contributed especially strongly to a high prevalence of Leptospira. This study contributes to understanding of the host and microhabitat preferences of Leptospira, which is important in controlling the spread of this disease in human's landscapes.