Displaying all 2 publications

Abstract:
Sort:
  1. Mustapha Bala Abubakar, Aini Ideris, AbdulRahman Omar, Mohd Hair Bejo
    MyJurnal
    Avian Influenza viruses belonging to the Orthomyxoviridae family are enveloped viruses with segmented negative sense RNA genome surrounded by a helical symmetry capsid. Influenza viruses, especially the highly pathogenic avian influenza virus (HPAI) such as H5 or H7 subtype are the most important pathogens for the poultry industry in recent times. The haemagglutinin protein and neuraminidase, serves as the target for the immune response of the host. Due to recurrent genetic reassortments between avian and human influenza viruses, global pandemics may emerge and the naive human immunity could not withstand pressure by the novel hybrid virus. The emergence of genetic engineering technology provided the industry with new methods of manufacturing diagnostics tools and vaccines. After extraction of RNA from the cell culture of strain influenza A/Chicken/Malaysia/2004(H5N1) of AIV, the viral RNA was converted to cDNA by a specific primer. The cDNA was amplified by the polymerase chain reaction (PCR) and analyzed
    by agarose gel electrophoresis. The intact PCR product of full length haemagglutinin gene was cloned in TO POTM TA Cloning vector. The full-length HA-encoding gene of H5N1 AIV was subcloned into a pPICZA vector. After successful ligation, the constructed plasmid was transformed into E.coli.Top10, Plasmid DNA from transformed bacteria was extracted in white colony and positive clones were confirmed by restriction digestion with Sacl and Not1 restriction enzymes, colony PCR screening and nucleotide sequencing. Construction of a recombinant pPICZA/H5HA plasmid containing the full length haemagglutinin gene was achieved as a first step
    towards the expression in Pichia pastoris.
  2. Amer A, Siti Suri A, Abdul Rahman O, Mohd HB, Faruku B, Saeed S, et al.
    Virol J, 2012 Nov 21;9:278.
    PMID: 23171743 DOI: 10.1186/1743-422X-9-278
    BACKGROUND: Feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV) are two important coronaviruses of domestic cat worldwide. Although FCoV is prevalent among cats; the fastidious nature of type I FCoV to grow on cell culture has limited further studies on tissue tropism and pathogenesis of FCoV. While several studies reported serological evidence for FCoV in Malaysia, neither the circulating FCoV isolated nor its biotypes determined. This study for the first time, describes the isolation and biotypes determination of type I and type II FCoV from naturally infected cats in Malaysia.

    FINDINGS: Of the total number of cats sampled, 95% (40/42) were RT-PCR positive for FCoV. Inoculation of clinical samples into Crandell feline kidney cells (CrFK), and Feline catus whole fetus-4 cells (Fcwf-4), show cytopathic effect (CPE) characterized by syncytial cells formation and later cell detachment. Differentiation of FCoV biotypes using RT-PCR assay revealed that, 97.5% and 2.5% of local isolates were type I and type II FCoV, respectively. These isolates had high sequence homology and phylogenetic similarity with several FCoV isolates from Europe, South East Asia and USA.

    CONCLUSIONS: This study reported the successful isolation of local type I and type II FCoV evident with formation of cytopathic effects in two types of cell cultures namely the CrFK and Fcwf-4 , where the later cells being more permissive. However, the RT-PCR assay is more sensitive in detecting the antigen in suspected samples as compared to virus isolation in cell culture. The present study indicated that type I FCoV is more prevalent among cats in Malaysia.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links