Carbonized natural filler can offer the production of low cost composites with an eco-friendliness value. The evolving field of electronics encourages the exploration of more functions and potential for carbonized natural filler, such as by modifying its surface chemistry. In this work, we have performed surface modification on carbonized wood fiber (CWF) prior to it being used as filler in the ethylene vinyl acetate (EVA) composite system. Zinc chloride (ZnCl2) with various contents (2 to 8 wt%) was used to surface modify the CWF and the effects of ZnCl2 composition on the surface morphology and chemistry of the CWF filler were investigated. Furthermore, the absorptive, mechanical, thermal, and electrical properties of the EVA composites containing CWF-ZnCl2 were also analyzed. SEM images indicated changes in the morphology of the CWF while FTIR analysis proved the presence of ZnCl2 functional groups in the CWF. EVA composites incorporating the CWF-ZnCl2 showed superior mechanical, thermal and electrical properties compared to the ones containing the CWF. The optimum content of ZnCl2 was found to be 6 wt%. Surface modification raised the electrical conductivity of the EVA/CWF composite through the development of conductive deposits in the porous structure of the CWF as a channel for ionic and electronic transfer between the CWF and EVA matrix.
Biodegradable polymers are gaining attention as alternatives to non-biodegradable plastics to address environmental issues. With the rising global demand for plastic products, the development of non-toxic, biodegradable plastics is a significant topic of research. Aliphatic polyester, the most common biodegradable polyester, is notable for its semi-crystalline structure and can be synthesized from fossil fuels, microbial fermentation, and plants. Due to great properties like being lightweight, biodegradable, biocompatible, and non-toxic, aliphatic polyesters are used in packaging, medical, agricultural, wearable devices, sensors, and textile applications. The biodegradation rate, crucial for biodegradable polymers, is discussed in this review as it is influenced by their structural properties and environmental conditions. This review discusses currently available biodegradable polyesters, their emerging applications, and the challenges in their commercialization. As research in this area grows, this review emphasizes the innovation in biodegradable aliphatic polyesters and their role in advancing environmental sustainability.