Displaying all 4 publications

Abstract:
Sort:
  1. Mohd Radzuan NA, Sulong AB, Hui D, Verma A
    Polymers (Basel), 2019 Aug 30;11(9).
    PMID: 31480276 DOI: 10.3390/polym11091425
    Polymer composites have been extensively fabricated given that they are well-fitted for a variety of applications, especially concerning their mechanical properties. However, inadequate outcomes, mainly regarding their electrical performance, have limited their significant potential. Hence, this study proposed the use of multiple fillers, with different geometries, in order to improve the electrical conductivity of a polymer composite. The fabricated composite was mixed, using the ball milling method, before being compressed by a hot press machine at 3 MPa for 10 min. The composite plate was then measured for both its in-plane and through-plane conductivities, which were 3.3 S/cm, and 0.79 S/cm, respectively. Furthermore, the experimental data were then verified using a predicted electrical conductivity model, known as a modified fibre contact model, which considered the manufacturing process, including the shear rate and flow rate. The study indicated that the predicted model had a significant trend and value, compared to the experimental model (0.65 S/cm for sample S1). The resultant fabricated composite materials were found to possess an excellent network formation, and good electrical conductivity for bipolar plate application, when applying compression pressure of 3 MPa for 10 min.
  2. Ismail NF, Mohd Radzuan NA, Sulong AB, Muhamad N, Che Haron CH
    Polymers (Basel), 2021 Jun 19;13(12).
    PMID: 34205236 DOI: 10.3390/polym13122005
    The use of kenaf fiber as a reinforcement material for polymer composites is gaining popularity, especially in the production of automotive components. The main objective of this current work is to relate the effect of alkali treatment on the single fiber itself and the composite material simultaneously. The effect of temperature condition during mechanical testing is also investigated. Composite materials with discontinuous natural kenaf fibers and epoxy resin were fabricated using a compression moulding process. The epoxy composites were reinforced with 50 wt% untreated and treated kenaf fibers. The kenaf fiber was treated with NaOH solution (6% by weight) for 24 h at room temperature. Kenaf fiber treated with NaOH treatment had a clean surface and no impurities. For the first time we can see that alkali treatment had a damaging effect on the mechanical properties of kenaf fibers itself and the treated kenaf/epoxy composites. The composite reinforced with untreated kenaf fiber and treated kenaf fiber showed increased tensile strength (72.85% and 12.97%, respectively) compared to the neat epoxy. Reinforcement of the composite with treated kenaf fiber decreased the tensile strength due to the fiber pull out and the formation of voids which weakens the adhesion between the fibers and matrix. The temperature conditions also play an important role in composites with a significant impact on the deterioration of composite materials. Treated kenaf fiber has thermal stability and is not sensitive to temperature and as a result reinforcement with treated kenaf gives a lower loss value of 76%.
  3. Mohd Radzuan NA, Khalid NN, Foudzi FM, Rajendran Royan NR, Sulong AB
    Polymers (Basel), 2023 Apr 11;15(8).
    PMID: 37111993 DOI: 10.3390/polym15081846
    The production of fabricated filaments for fused deposited modelling printing is critical, especially when higher loading filler (>20 wt.%) is involved. At higher loadings, printed samples tend to experience delamination, poor adhesion or even warping, causing their mechanical performance to deteriorate considerably. Hence, this study highlights the behaviour of the mechanical properties of printed polyamide-reinforced carbon fibre at a maximum of 40 wt.%, which can be improved via a post-drying process. The 20 wt.% samples also demonstrate improvements of 500% and 50% in impact strength and shear strength performance, respectively. These excellent performance levels are attributed to the maximum layup sequence during the printing process, which reduces the fibre breakage. Consequently, this enables better adhesion between layers and, ultimately, stronger samples.
  4. Mohd Radzuan NA, Ismail NF, Fadzly Md Radzi MK, Razak ZB, Tharizi IB, Sulong AB, et al.
    Polymers (Basel), 2019 Oct 17;11(10).
    PMID: 31627431 DOI: 10.3390/polym11101707
    To date, the mechanical performance of kenaf composites is still unsatisfied in term of its mechanical performance. Therefore, research focuses on kenaf composites fabrication through the selection of polymer resin, including epoxy, polypropylene, and polylactic acid. The incorporated kenaf fibre at 10 wt % to 40 wt % loadings was conducted using injection and a compression moulding process. The compressed materials indicated high tensile strength at 240 MPa compared to inject materials (60 MPa). Significant improvement on impact strength (9 kJ/m2) was due to the unpulled-out fibre that dispersed homogenously and hence minimize the microcrack acquire. Meanwhile, high flexural strength (180 MPa) obtained by kenaf/epoxy composites due to the fibre orientate perpendicular to the loading directions, which improve its mechanical properties. The findings indicate that the kenaf fibre reinforced thermoset materials exhibit better mechanical properties as a function to the battery tray applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links