Displaying all 2 publications

Abstract:
Sort:
  1. Mohd-Hairul AR, Sade AB, Yiap BC, Raha AR
    Genet. Mol. Res., 2011;10(4):2757-64.
    PMID: 22095601 DOI: 10.4238/2011.November.8.1
    DNA extraction was carried out on 32 medicinal plant samples available in Malaysia using the TriOmic(TM) extraction kit. Amounts of 0.1 g flowers or young leaves were ground with liquid nitrogen, lysed at 65°C in RY1(plus) buffer and followed by RNAse treatment. Then, RY2 buffer was added to the samples and mixed completely by vortexing before removal of cell debris by centrifugation. Supernatants were transferred to fresh microcentrifuge tubes and 0.1 volume RY3 buffer was added to each of the transferred supernatant. The mixtures were applied to spin columns followed by a centrifugation step to remove buffers and other residues. Washing step was carried out twice by applying 70% ethanol to the spin columns. Genomic DNA of the samples was recovered by applying 50 μL TE buffer to the membrane of each spin column, followed by a centrifugation step at room temperature. A modification of the TriOmic(TM) extraction procedure was carried out by adding chloroform:isoamyl alcohol (24:1) steps in the extraction procedure. The genomic DNA extracted from most of the 32 samples showed an increase of total yield when chloroform:isoamyl alcohol (24:1) steps were applied in the TriOmicTM extraction procedure. This preliminary study is very important for molecular studies of medicinal plants available in Malaysia since the DNA extraction can be completed in a shorter period of time (within 1 h) compared to manual extraction, which entails applying phenol, chloroform and ethanol precipitation, and requires 1-2 days to complete.
  2. Toh C, Mohd-Hairul AR, Ain NM, Namasivayam P, Go R, Abdullah NAP, et al.
    BMC Res Notes, 2017 Nov 02;10(1):554.
    PMID: 29096695 DOI: 10.1186/s13104-017-2872-6
    BACKGROUND: Vanda Mimi Palmer (VMP) is commercially valuable for its strong fragrance but little is known regarding the fragrance production and emission sites on the flowers.

    RESULTS: Olfactory perception detected fragrance only from the petals and sepals. Light and Environmental Scanning Electron microscopy analyses on fresh tissues showed distributions of stomata and trichomes concentrated mostly around the edges. These results paralleled the rich starch deposits and intense neutral red stain, indicating strong fragrance and trichomes as potential main fragrance release sites. Next Generation Sequencing (NGS) transcriptomic data of adaxial and abaxial layers of the tissues showed monoterpene synthase transcripts specifically linalool and ocimene synthases distributed throughout the tissues. qPCR analyses taken at different time points revealed high levels of linalool and ocimene synthases transcripts in the early morning with maximal level at 4.00 am but remained low throughout daylight hours.

    CONCLUSIONS: Knowledge of the VMP floral anatomy and its fragrance production characteristics, which complemented our previous molecular and biochemical data on VMP, provided additional knowledge on how fragrance and flower morphology are closely intertwined. Further investigation on the mechanisms of fragrance biosynthesis and interaction of potential pollinators would elucidate the evolution of the flower morphology to maximize the reproduction success of this plant.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links