Displaying all 2 publications

Abstract:
Sort:
  1. Mohd Jaafar MN, Eldrainy YA, Mat Ali MF, Wan Omar WZ, Mohd Hizam MF
    Environ Sci Technol, 2012 Feb 21;46(4):2445-50.
    PMID: 22296110 DOI: 10.1021/es2025005
    The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber.
  2. Hossain KA, Mohd-Jaafar MN, Appalanidu KB, Mustafa A, Ani FN
    Environ Technol, 2005 Mar;26(3):251-9.
    PMID: 15881021
    Selective Non-Catalytic Reduction (SNCR) of nitric oxide has been studied experimentally by injecting aqueous urea solution with and without additive in a pilot-scale diesel fired tunnel furnace at 3.4% excess oxygen level and with low ppm of baseline NO(x) ranging from 65 to 75 ppm within the investigated temperature range. The tests have been carried out using commercial grade urea as NO(x) reducing agent and commercial grade sodium carbonate as additive. The furnace simulated the small-scale combustion systems, where the operating temperatures are usually in the range of about 973 to 1323 K and NO(x) emission level remains below 100 ppm. With 5% plain urea solution, at Normalized Stoichiometric Ratio (NSR) of 4 as much as 54% reduction was achieved at 1128 K, whilst in the additive case the NO(x) reduction was improved to as much as 69% at 1093 K. Apart from this improvement, in the additive case, the effective temperature window as well as peak temperature of NO(x) reduction shifted towards lower temperatures. The result is quite significant, especially for this investigated level of baseline NO(x). The ammonia slip measurements showed that in both cases the slip was below 16 ppm at NSR of 4 and optimum temperature of NO(x) reduction. Finally, the investigations demonstrated that urea based SNCR is quite applicable to small-scale combustion applications and commercial grade sodium carbonate is a potential additive.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links