PATIENTS AND METHODS: A total of 70 children with myopia (aged 8-9 years old) were recruited. A total of 45 children were fitted with Ortho-K, and 25 were fitted with SVS. The PEL and axial length (AL) were measured by using MRI 3-Tesla, whereas central and peripheral refraction (PR) measurements were conducted at ±30 degrees horizontally with nasal (N) and temporal (T) intervals of 10°, 20°, and 30° and with an open field autorefractometer (WAM-5500 Grand Seiko). All the measurements were conducted at the baseline and 12 months.
RESULTS: The MRI analysis indicates that at 12 months, the SVS group showed more elongation of the PEL and AL at all eccentricities than the Ortho-K group did (p < 0.05). The Ortho-K group only showed significant PEL elongation beyond 20 degrees at N20, N30, T20, and T30 (p < 0.05); however, a significant reduction in the AL was detected in the center AL, N10, and T10 (p < 0.05). All eccentricities in the relative PR of the Ortho-K group were significantly more myopic than at the baseline (p < 0.05), whereas in the SVS group, all eccentricities in the relative PR were shown to be significantly more hyperopic than at the baseline (p < 0.05). The PEL and PR showed negative correlations at 12 months in the Ortho-K group.
CONCLUSION: MRI analysis can be utilized to describe changes in PEL in myopic children. It appears that as myopia progressed in Ortho-K lens wearers, the PEL increased by a greater amount than the AL did; thus, the retina was reshaped to become increasingly oblate and to display peripheral myopic defocus.
METHODS: Healthy school children aged < 10 years were invited to take part in this cross-sectional study. Refraction and best-corrected distance visual acuity (BCDVA) were determined using cycloplegic refraction and a logarithm of the minimum angle of resolution (logMAR) chart, respectively. All children underwent MRI using a 3-Tesla whole-body scanner. Quantitative eyeball measurements included the longitudinal axial length (LAL), horizontal width (HW), and vertical height (VH) along the cardinal axes. Correlation analysis was used to determine the association between the level of refractive error and the eyeball dimensions.
RESULTS: A total of 70 eyes from 70 children (35 male, 35 female) with a mean (standard deviation [SD]) age of 8.38 (0.49) years were included and analyzed. Mean (SD) refraction (spherical equivalent, SEQ) and BCDVA were -2.55 (1.45) D and -0.01 (0.06) logMAR, respectively. Ocular dimensions were greater in myopes than in emmetropes (all P < 0.05), with no significant differences according to sex. Mean (SD) ocular dimensions were LAL 24.07 (0.91) mm, HW 23.41 (0.82) mm, and VH 23.70 (0.88) mm for myopes, and LAL 22.69 (0.55) mm, HW 22.65 (0.63) mm, and VH 22.94 (0.69) mm for emmetropes. Significant correlations were noted between SEQ and ocular dimensions, with a greater change in LAL (0.46 mm/D, P < 0.001) than in VH (0.27 mm/D, P < 0.001) and HW (0.22 mm/D, P = 0.001).
CONCLUSIONS: Myopic eyeballs are larger than those with emmetropia. The eyeball elongates as myopia increases, with the greatest change in LAL, the least in HW, and an intermediate change in VH. These changes manifest in both sexes at a young age and low level of myopia. These data may serve as a reference for monitoring the development of refractive error in young Malaysian children of Chinese origin.