Displaying all 2 publications

Abstract:
Sort:
  1. Kittiwattanawong K, Ponlawat A, Boonrotpong S, Nanakorn N, Kongchouy N, Moonmake S, et al.
    Trop Biomed, 2020 Jun 01;37(2):397-408.
    PMID: 33612809
    The Anopheles dirus mosquito is a primary malaria vector that transmits many species of Plasmodium parasites in Thailand and is widely spread across its geographic area. In the current study, the levels of expression of the suppressor of cytokine signaling (SOCS) gene in An. dirus mosquitoes infected with P. vivax were examined. The level of the gene's expression determined by mRNA extraction in An. dirus females (n=2,400) was studied at different times (0, 12, 24, 36, and 48 h after feeding), with different types of blood feeding (non-feeding, parasite-negative blood feeding, parasite-positive blood feeding) and in different parts of the body of mosquito samples (thorax and abdomen). The datasets were analyzed based on their relative expression ratio by the 2-ΔΔCT method and were tested for significant differences with ANOVA. The results showed that the An. dirus SOCS gene was stimulated in the abdomen 12 h and 24 h after blood feeding about three times more highly than in unfed females, with the difference being significant. At 24 h after P. vivax-infected blood feeding, the SOCS gene in the abdomen was expressed more highly than 24 h after parasite-negative blood feeding and expression was almost 36 times higher than in the control group who were not fed blood. However, in the thorax at all times after feeding and non-feeding, there was no expression of the SOCS gene. Therefore, the SOCS gene in An. dirus was most highly expressed 24 h post-feeding with a P. vivax-infected bloodmeal, which indicates that the SOCS gene in the major malaria vector in Thailand plays an important role in its immune system and its response to P. vivax infection.
  2. Narapakdeesakul D, Pengsakul T, Kaewparuehaschai M, Thongsahuan S, Moonmake S, Lekcharoen P, et al.
    Acta Trop, 2023 Dec;248:107030.
    PMID: 37742788 DOI: 10.1016/j.actatropica.2023.107030
    Despite the natural occurrences of human infections by Plasmodium knowlesi, P. cynomolgi, P. inui, and P. fieldi in Thailand, investigating the prevalence and genetic diversity of the zoonotic simian malaria parasites in macaque populations has been limited to certain areas. To address this gap, a total of 560 long-tailed macaques (Macaca fascicularis) and 20 southern pig-tailed macaques (M. nemestrina) were captured from 15 locations across 10 provinces throughout Thailand between 2018 and 2021 for investigation of malaria, as were 15 human samples residing in two simian-malaria endemic provinces, namely Songkhla and Satun, who exhibited malaria-like symptoms. Using PCR techniques targeting the mitochondrial cytb and cox1 genes coupled with DNA sequencing, 40 long-tailed macaques inhabiting five locations had mono-infections with one of the three simian malaria species. Most of the positive cases of macaque were infected with P. inui (32/40), while infections with P. cynomolgi (6/40) and P. knowlesi (2/40) were less common and confined to specific macaque populations. Interestingly, all 15 human cases were mono-infected with P. knowlesi, with one of them residing in an area with two P. knowlesi-infected macaques. Nucleotide sequence analysis showed a high level of genetic diversity in P. inui, while P. cynomolgi and P. knowlesi displayed limited genetic diversity. Phylogenetic and haplotype network analyses revealed that P. inui in this study was closely related to simian and Anopheles isolates from Peninsular Malaysia, while P. cynomolgi clustered with simian and human isolates from Asian countries. P. knowlesi, which was found in both macaques and humans in this study, was closely related to isolates from macaques, humans, and An. hackeri in Peninsular Malaysia, suggesting a sylvatic transmission cycle extending across these endemic regions. This study highlights the current hotspots for zoonotic simian malaria and sheds light on the genetic characteristics of recent isolates in both macaques and human residents in Thailand.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links