Displaying all 4 publications

Abstract:
Sort:
  1. Shahbazi-Gahrouei D, Moradi Khaniabadi P, Moradi Khaniabadi B, Shahbazi-Gahrouei S
    J Res Med Sci, 2019;24:38.
    PMID: 31143239 DOI: 10.4103/jrms.JRMS_437_18
    Medical imaging modalities are used for different types of cancer detection and diagnosis. Recently, there have been a lot of studies on developing novel nanoparticles as new medical imaging contrast agents for the early detection of cancer. The aim of this review article is to categorize the medical imaging modalities accompanying with using nanoparticles to improve potential imaging for cancer detection and hence valuable therapy in the future. Nowadays, nanoparticles are becoming potentially transformative tools for cancer detection for a wide range of imaging modalities, including computed tomography (CT), magnetic resonance imaging, single photon emission CT, positron emission tomography, ultrasound, and optical imaging. The study results seen in the recent literature provided and discussed the diagnostic performance of imaging modalities for cancer detections and their future directions. With knowledge of the correlation between the application of nanoparticles and medical imaging modalities and with the development of targeted contrast agents or nanoprobes, they may provide better cancer diagnosis in the future.
  2. Moradi Khaniabadi P, Shahbazi-Gahrouei D, Jaafar MS, Majid AMSA, Moradi Khaniabadi B, Shahbazi-Gahrouei S
    Avicenna J Med Biotechnol, 2017 11 2;9(4):181-188.
    PMID: 29090067
    BACKGROUND: Advances of nanotechnology have led to the development of nano-materials with both potential diagnostic and therapeutic applications. Among them, Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) have received particular attention. Modified EDC coupling fraction was used to fabricate the SPION-C595 as an MR imaging contrast agent for breast cancer detection in early stages.

    METHODS: Nanoprobe characterization was confirmed using Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDAX), and Photon Correlation Spectroscopy (PCS). Protein and iron concentration of nanoprobe was examined by standard method. MTT assay was performed to evaluate the cytotoxicity of the nanoprobe in breast cancer cell line (MCF-7). T2-weighted MR imaging was performed to evaluate the signal enhancement on T2 relaxation time of nanoprobe using spin-echo pulse sequence.

    RESULTS: As results showed, SPIONs-C595 provided active targeting of breast cancer cell (MCF-7) at a final concentration of 600 μgFe/ml. The final concentration of protein was calculated to be at 0.78 μgprotein/ml. The hydrodynamic size of the nanoprobe was 87.4±0.7 nm. The MR imaging results showed a good reduction of T2 relaxation rates for the highest dose of SPIONs-C595.

    DISCUSSION: Based on the results, SPIONs-C595 nanoprobe has a potential in T2-weighted MR imaging contrast agent for breast cancer cell (MCF-7) detection.

  3. Moradi Khaniabadi P, Shahbazi-Gahrouei D, Malik Shah Abdul Majid A, Suhaimi Jaafar M, Moradi Khaniabadi B, Shahbazi-Gahrouei S
    Iran Biomed J, 2017 11;21(6):360-8.
    PMID: 28601058
    Background: Magnetic resonance imaging (MRI) plays an essential role in molecular imaging by delivering the contrast agent into targeted cancer cells. The aim of this study was to evaluate the C595 monoclonal antibody-conjugated superparamagnetic iron oxide nanoparticles (SPIONs-C595) for the detection of breast cancer cell (MCF-7).

    Methods: The conjugation of monoclonal antibody and nanoparticles was confirmed using X-ray diffraction, transmission electron microscopy, and photon correlation spectroscopy. The selectivity of the nanoprobe for breast cancer cells (MCF-7) was obtained by Prussian blue, atomic emission spectroscopy, and
    MRI relaxometry.

    Results: The in vitro MRI showed that T2 relaxation time will be reduced 76% when using T2-weighed magnetic resonance images compared to the control group (untreated cells) at the dose of 200 μg
    Fe/ml, as the optimum dose. In addition, the results showed the high uptake of nanoprobe into MCF-7
    cancer cells.

    Conclusion: The SPIONs-C595 nanoprobe has potential for the detection of specific breast cancer.

  4. Farsi E, Esmailli K, Shafaei A, Moradi Khaniabadi P, Al Hindi B, Khadeer Ahamed MB, et al.
    Drug Chem Toxicol, 2016 Oct;39(4):461-73.
    PMID: 27033971 DOI: 10.3109/01480545.2016.1157810
    CONTEXT: Clinacanthus nutans (CN) is used traditionally for treating various illnesses. Robust safety data to support its use is lacking.

    OBJECTIVE: To evaluate the adverse effects of aqueous extract of CN leaves (AECNL).

    MATERIALS AND METHODS: The oral toxicity of the AECNL was tested following Organisation for Economic Co-operation and Development (OECD) guidelines. Mutagenicity (Ames test) of AECNL was evaluated using TA98 and TA100 Salmonella typhimurium strains.

    RESULTS: No mortality or morbidity was found in the animals upon single and repeated dose administration. However, significant body weight loss was observed at 2000 mg/kg during sub-chronic (90 d) exposure. In addition, increased eosinophil at 500 mg/kg and decreased serum alkaline phosphatase levels at 2000 mg/kg were observed in male rats. Variations in glucose and lipid profiles in treated groups were also observed compared to control. Ames test revealed no evidence of mutagenic or carcinogenic effects at 500 μg/well of AECNL.

    CONCLUSION: The median lethal dose (LD50) of the AECNL is >5000 mg/kg and the no-observed-adverse-effect level is identified to be greater than 2000 mg/kg/day in 90-d study.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links