Displaying all 3 publications

Abstract:
Sort:
  1. Lewiecki EM, Binkley N, Morgan SL, Shuhart CR, Camargos BM, Carey JJ, et al.
    J Clin Densitom, 2016 Apr-Jun;19(2):127-40.
    PMID: 27020004 DOI: 10.1016/j.jocd.2016.03.003
    Dual-energy X-ray absorptiometry (DXA) is a technology that is widely used to diagnose osteoporosis, assess fracture risk, and monitor changes in bone mineral density (BMD). The clinical utility of DXA is highly dependent on the quality of the scan acquisition, analysis, and interpretation. Clinicians are best equipped to manage patients when BMD measurements are correct and interpretation follows well-established standards. Poor-quality acquisition, analysis, or interpretation of DXA data may mislead referring clinicians, resulting in unnecessary diagnostic evaluations, failure to evaluate when needed, inappropriate treatment, or failure to provide medical treatment, with potentially ineffective, harmful, or costly consequences. Misallocation of limited healthcare resources and poor treatment decisions can be minimized, and patient care optimized, through meticulous attention to DXA instrument calibration, data acquisition and analysis, interpretation, and reporting. This document from the International Society for Clinical Densitometry describes quality standards for BMD testing at DXA facilities worldwide to provide guidance for DXA supervisors, technologists, interpreters, and clinicians. High-quality DXA testing is necessary for correct diagnostic classification and optimal fracture risk assessment, and is essential for BMD monitoring.
  2. Anderson PA, Morgan SL, Krueger D, Zapalowski C, Tanner B, Jeray KJ, et al.
    J Clin Densitom, 2019 08 16;22(4):517-543.
    PMID: 31519473 DOI: 10.1016/j.jocd.2019.07.013
    This position development conference (PDC) Task Force examined the assessment of bone status in orthopedic surgery patients. Key questions included which orthopedic surgery patients should be evaluated for poor bone health prior to surgery and which subsets of patients are at high risk for poor bone health and adverse outcomes. Second, the reliability and validity of using bone densitometry techniques and measurement of specific geometries around the hip and knee before and after arthroplasty was determined. Finally, the use of computed tomography (CT) attenuation coefficients (Hounsfield units) to estimate bone quality at anatomic locations where orthopedic surgery is performed including femur, tibia, shoulder, wrist, and ankle were reviewed. The literature review identified 665 articles of which 198 met inclusion exclusion criteria and were selected based on reporting of methodology, reliability, or validity results. We recommend that the orthopedic surgeon be aware of established ISCD guidelines for determining who should have additional screening for osteoporosis. Patients with inflammatory arthritis, chronic corticosteroid use, chronic renal disease, and those with history of fracture after age 50 are at high risk of osteoporosis and adverse events from surgery and should have dual energy X-ray absorptiometry (DXA) screening before surgery. In addition to standard DXA, bone mineral density (BMD) measurement along the femur and proximal tibia is reliable and valid around implants and can provide valuable information regarding bone remodeling and identification of loosening. Attention to positioning, selection of regions of interest, and use of special techniques and software is required. Plain radiographs and CT provide simple, reliable methods to classify the shape of the proximal femur and to predict osteoporosis; these include the Dorr Classification, Cortical Index, and critical thickness. Correlation of these indices to central BMD is moderate to good. Many patients undergoing orthopedic surgery have had preoperative CT which can be utilized to assess regional quality of bone. The simplest method available on most picture archiving and communications systems is to simply measure a regions of interest and determine the mean Hounsfield units. This method has excellent reliability throughout the skeleton and has moderate correlation to DXA based on BMD. The prediction of outcome and correlation to mechanical strength of fixation of a screw or implant is unknown.
  3. Işık EB, Brazas MD, Schwartz R, Gaeta B, Palagi PM, van Gelder CWG, et al.
    Nat Biotechnol, 2023 Aug;41(8):1171-1174.
    PMID: 37568018 DOI: 10.1038/s41587-023-01891-9
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links