Displaying all 3 publications

Abstract:
Sort:
  1. Muhammad BG, Jaafar MS, Akpa TC
    Radiat Prot Dosimetry, 2010 Sep;141(2):127-33.
    PMID: 20562117 DOI: 10.1093/rpd/ncq162
    Stratified sampling procedure was employed to collect a total of 40 samples; 2 from each stratum, measuring an approximate dimension of 3.25 km(2) of the actual sample site. Appropriate volumes were then evaporated and transferred into clean stainless steel planchets (ISO 9696 and ISO 9697). An eight channel gas-flow proportional counting system connected to a microprocessor loaded with a spreadsheet programme (Quarttro-Pro) and graphic programme (Multiplan) initially calibrated for efficiency was employed to count the background and the prepared samples. A mean efficiency of 33.44 and 41.24 % for the respective alpha and beta sources was obtained. A low background activity was also observed with a mean of 0.165 Bq for alpha and 1.119 Bq for beta. The gross alpha and beta activity concentrations in the water were found to range from 80 +/- 0.05 to 2300 +/- 0.41 Bq m(-3) and 120 +/- 0.08 to 4970 +/- 0.78 Bq m(-3), respectively. This clearly indicate areas of elevated alpha and beta activity concentrations of 37.5 and 47.5 %, respectively when compared with the International Commission for Radiological Protection (1991) maximum acceptable values of 500 Bq m(-3) for alpha and 1000 Bq m(-3) for beta.
  2. Muhammad BG, Jaafar MS, Azhar AR, Akpa TC
    Radiat Prot Dosimetry, 2012 Apr;149(3):340-6.
    PMID: 21642647 DOI: 10.1093/rpd/ncr230
    Measurements of (222)Rn activity concentration were carried out in 39 samples collected from the domestic and drinking water sources used in the island and mainland of Penang, northern peninsular, Malaysia. The measured activity concentrations ranged from 7.49 to 26.25 Bq l(-1), 0.49 to 9.72 Bq l(-1) and 0.58 to 2.54 Bq l(-1) in the raw, treated and bottled water samples collected, respectively. This indicated relatively high radon concentrations compared with that from other parts of the world, which still falls below the WHO recommended treatment level of 100 Bq l(-1). From this data, the age-dependent associated committed effective doses due to the ingestion of (222)Rn as a consequence of direct consumption of drinking water were calculated. The committed effective doses from (222)Rn resulting from 1 y's consumption of these water were estimated to range from 0.003 to 0.048, 0.001 to 0.018 and 0.002 to 0.023 mSv y(-1), for age groups 0-1, 2-16 and >16 y, respectively.
  3. Muhammad BG, Jaafar MS, Abdul Rahman A, Ingawa FA
    Environ Monit Assess, 2012 Aug;184(8):5043-9.
    PMID: 21901308 DOI: 10.1007/s10661-011-2320-3
    Soil serves as a major reservoir for contaminants as it posseses an ability to bind various chemicals together. To safeguard the members of the public from an unwanted exposure, studies were conducted on the sediments and soil from water bodies that form the major sources of domestic water supply in northern peninsular Malaysia for their trace element concentration levels. Neutron Activation Analysis, using Nigeria Research Reactor-1 (NIRR-1) located at the Centre for Energy Research and Training, Zaria, Nigeria was employed as the analytical tool. The elements identified in major quantities include Na, K, and Fe while As, Br, Cr, U, Th, Eu, Cs, Co, La, Sm, Yb, Sc, Zn, Rb, Ba, Lu, Hf, Ta, and Sb were also identified in trace quantities. Gamma spectroscopy was also employed to analyze some soil samples from the same area. The results indicated safe levels in terms of the radium equivalent activity, external hazard index as well as the mean external exposure dose rates from the soil. The overall screening of the domestic water sources with relatively high heavy metals concentration values in sediments and high activity concentration values in soil is strongly recommended as their accumulation overtime as a consequence of leaching into the water may be of health concern to the members of the public.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links