This study characterizes crude enzymes derived from Penicillium rolfsii c3-2(1) IBRL, a mesophilic fungus isolated from the local soil of Malaysia. Prior to enzyme activity evaluation, P. rolfsii c3-2(1) IBRL was inoculated into a broth medium containing oil-palm trunk residues for the preparation of crude enzymes. Oil-palm trunk residues were optimally hydrolysed at pH5.0 and 50°C. P. rolfsii c3-2(1) IBRL-derived crude enzymes displayed higher thermal stability compared with the commercial enzymes, Celluclast 1.5 L and Acellerase 1500. Moreover, the hydrolysing activities of the P. rolfsii c3-2(1) IBRL-derived crude enzymes (xylan, arabinan, and laminarin) were superior compared to that of Celluclast 1.5 L and Acellerase 1500, and exhibit 2- to 3-fold and 3- to 4-fold higher oil-palm trunk residues-hydrolysing specific activity, respectively. This higher hydrolysis efficiency may be attributed to the weak 'lignin-binding' ability of the P. rolfsii c3-2(1) IBRL-derived enzymes compared to the commercial enzymes.
Application of microbial enzymes for paper deinking is getting tremendous attention due to the rapidly increasing of waste paper every year. This study reports the deinking efficiency of laser-printed paper by the lignocellulolytic enzyme from Penicillium rolfsii c3-2(1) IBRL strain compared to other enzyme sources as well as commercial available enzymes. High enzymatic deinking efficiency of approximately 82 % on laser-printed paper was obtained by pulp treatment with crude enzyme from P. rolfsii c3-2(1) IBRL. However, this crude enzyme was found to reduce the paper strength properties of the pulp based on the results of tensile, tear and burst indices, most probably due to the cellulose degradation. This was further proven by the low viscosity of paper pulp obtained after enzymatic treatment and increasing of sugar production during the treatment. Balancing to this detrimental effect on paper pulp, high deinking efficiency was achieved within a short period of time, in which the enzymatic treatment was conducted for 30 min that enabled contribution to higher brightness index obtained, thus promoting savings of time and energy consumption, therefore environmental sustainability. Extensive research should be conducted to understand the nature and mechanism of enzymatic deinking process by the crude enzyme from P. rolfsii c3-2(1) IBRL in order to improve paper strength properties.
Old oil palm trunks that had been felled for replanting were found to contain large quantities of high glucose content sap. Notably, the sap in the inner part of the trunk accounted for more than 80% of the whole trunk weight. The glucose concentration of the sap from the inner part was 85.2g/L and decreased towards the outer part. Other sugars found in relatively low concentrations were sucrose, fructose, galactose, xylose, and rhamnose. In addition, oil palm sap was found to be rich in various kinds of amino acids, organic acids, minerals and vitamins. Based on these findings, we fermented the sap to produce ethanol using the sake brewing yeast strain, Saccharomyces cerevisiae Kyokai no.7. Ethanol was produced from the sap without the addition of nutrients, at a comparable rate and yield to the reference fermentation on YPD medium with glucose as a carbon source. Likewise, we produced lactic acid, a promising material for bio-plastics, poly-lactate, from the sap using the homolactic acid bacterium Lactobacillus lactis ATCC19435. We confirmed that sugars contained in the sap were readily converted to lactic acid with almost the same efficiency as the reference fermentation on MSR medium with glucose as a substrate. These results indicate that oil palm trunks felled for replanting are a significant resource for the production of fuel ethanol and lactic acid in palm oil-producing countries such as Malaysia and Indonesia.