Aromatic polyamides are well-known as high-performance materials due to their outstanding properties making them useful in a wide range of applications. However, their limited solubility in common organic solvents restricts their processability and becomes a hurdle in their applicability. This study is focused on the synthesis of processable ferrocene-based terpolyamides and their polydimethylsiloxane (PDMS)-containing block copolymers, using low-temperature solution polycondensation methodology. All the synthesized materials were structurally characterized using FTIR and 1H NMR spectroscopic techniques. The ferrocene-based terpolymers and block copolymers were soluble in common organic solvents, while the organic analogs were found only soluble in sulfuric acid. WXRD analysis showed the amorphous nature of the materials, while the SEM analysis exposed the modified surface of the ferrocene-based block copolymers. The structure-property relationship of the materials was further elucidated by their water absorption and thermal behavior. These materials showed low to no water absorption along with their high limiting oxygen index (LOI) values depicting their good flame-retardant behavior. DFT studies also supported the role of various monomers in the polycondensation reaction where the electron pair donation from HOMO of diamine monomer to the LUMO of acyl chloride was predicted, along with the calculation of various other parameters of the representative terpolymers and block copolymers.
3-D Bioprinting is employed as a novel approach in biofabrication to promote skin regeneration following chronic-wounds and injury. A novel bioink composed of carbohydrazide crosslinked {polyethylene oxide-co- Chitosan-co- poly(methylmethacrylic-acid)} (PEO-CS-PMMA) laden with Nicotinamide and human dermal fibroblast was successfully synthesized via Free radical-copolymerization at 73 °C. The developed bioink was characterized in term of swelling, structural-confirmation by solid state 13C-Nuclear Magnetic Resonance (NMR), morphology, thermal, 3-D Bioprinting via extrusion, rheological and interaction with DNA respectively. The predominant rate of gelation was attributed to the electrostatic interactions between cationic CS and anionic PMMA pendant groups. The morphology of developed bioink presented a porous architecture satisfying the cell and growth-factor viability across the barrier. The thermal analysis revealed two-step degradation with 85 % weight loss in term of decomposition and molecular changes in the bioink moieties By applying low pressure in the range of 25-50 kPa, the optimum reproducibility and printability were determined at 37 °C in the viscosity range of 500-550 Pa. s. A higher survival rate of 92 % was observed for (PEO-CS-PMMA) in comparison to 67 % for pure chitosan built bioink. A binding constant of K ≈ 1.8 × 106 M-1 recognized a thermodynamically stable interaction of (PEO-CS-PMMA) with the Salmon-DNA. Further, the addition of PEO (5.0 %) was addressed with better self-healing and printability to produce skin-tissue constructs to replace the infected skin in human.