Displaying all 3 publications

Abstract:
Sort:
  1. Mohialdeen IMJ, Hakimi MH, Fatah SS, Abdula RA, Khanaqa PA, Lathbl MA, et al.
    ACS Omega, 2024 Feb 13;9(6):7085-7107.
    PMID: 38371760 DOI: 10.1021/acsomega.3c09003
    This investigation looks at the Late Triassic Baluti Formation's organic geochemical, mineralogical, and petrographical characteristics from a single exploration well (TT-22) near the Taq Taq oilfield in northern Iraq. The Baluti Formation shale samples that were studied in the studied well have high total organic carbon (TOC %) values up to 4.92 wt % and mostly hydrogen-rich types I and II kerogen with a minor gradient to types II/III and III kerogen, indicating a good oil-source rock. The hydrogen-rich kerogen was also confirmed by various organic matter (OM) origins and depositional environment-related biomarkers. The biomarker indicators demonstrate that the Baluti shale was deposited under anoxic conditions and contains a variety of OM generated mostly from algae marine and other aqueous organic materials, along with some terrigenous land plants. The geochemical and optical maturity indicators show that most of the examined Baluti shale samples, with a deep burial depth of more than 4000 m, are thermally mature, thus defining peak-mature to late-mature stages of the oil generation window. According to the basin models, from the late Miocene to the present, between 10 and 59% of the kerogen in the Baluti shale source rock has been transformed into oil, which is consistent with the VR values between 0.77 and 1.08%. The presence of the oil crossover in these shale rocks with an oil saturation index of more than 100 mg HC/g rock supports the maximal oil generation from the Baluti source rock system. Additionally, there was little oil expulsion from the Baluti source rock system at the end of the late Miocene, with transformation ratio values below 60% (59%). Considering the more significant oil generation and little expulsion, a high pressure was generated and forced the brittle minerals of the Baluti shales (mainly quartz), creating a natural fracture system as recognized and observed in the thin section. This natural fracture system enhances the porosity system of tight shale rocks of the Baluti Formation, giving rise to a high probability of oil production using hydraulic fracturing stimulation.
  2. Al-Matary AM, Hakimi MH, Mustapha KA, Rahim A, Naseem W, Al-Shawafi ZA
    ACS Omega, 2024 Apr 16;9(15):17398-17414.
    PMID: 38645344 DOI: 10.1021/acsomega.4c00160
    Oil-bearing sandstone samples were collected from the Lower Cretaceous sequence in the Kharir-2 exploration well, Kharir oilfields (Eastern Yemen). The current study integrates biomarker of the aliphatic hydrocarbon fraction of the extracted oil with a new finding from the molecular structure of the oil-asphaltene, in order to learn more about their properties, including organic matter (OM) input, depositional environment, and thermal maturity. The overall oil composition results show that the extracted oils have a high saturated hydrocarbon of up to 50% and significant levels of aromatic hydrocarbon and polar components, indicating generally paraffinic to naphthenic oil. This claim agrees with the molecular structure of the kerogen derived from the pyrolysis-gas chromatography result of the oil-asphaltene, which suggests that the extracted oils from the Lower Cretaceous sandstone reservoirs are mainly paraffinic-naphthenic-aromatic oils, exhibiting low wax content and originated from marine type II kerogen. The type II kerogen of the marine-source rock is also demonstrated by the bulk kinetic model of the oil-asphaltene for the extracted oils, with a broad range of Ea between 38 and 62 kcal/mol and a frequency factor (A) of 1.52-1.47 × 1013/1 s. The biomarker characteristics of the aliphatic fraction show that the extracted oils from the Lower Cretaceous sandstone reservoirs were generated from clay-rich source rock, containing OM origin of mainly marine and terrestrial OM input and deposited under suboxic environmental conditions. Furthermore, the maturity-sensitive aliphatic biomarker parameters indicate that the extracted oils were generated from mature source rock in the range of the peak-mature stage of the oil generation window. Oil-source rock correlation of various established biomarker proxies for OM origin, depositional environment, and lithology suggests that these extracted oils were possibly generated from a single source rock, and the Madbi clay-rich formation contributed to most of the extracted oil from the Lower Cretaceous sandstone reservoir rocks.
  3. Hakimi MH, Kahal A, Rahim A, Naseem W, Alsomid W, Al-Buraihi A, et al.
    ACS Omega, 2023 Aug 22;8(33):30483-30499.
    PMID: 37636926 DOI: 10.1021/acsomega.3c03691
    The Jiza-Qamar Basin is one of the most important exploration sedimentary basins in Yemen. For over a decade, the exploration of hydrocarbons has been occurring in this basin. Late Cretaceous age rocks are the most occurring organic-rich sediments in this basin, including coals, coaly shales, and shales. The studied organic-rich shale beds are from the Late Cretaceous Mukalla Formation and associated with coal seams. These organic-rich shales can serve as source rocks for hydrocarbon generation potential. The current study investigates the geochemical characteristics, including assessing the organic matter (OM) input, sedimentary environmental conditions, and hydrocarbon generation potential of the organic-rich shale within the Mukalla Formation from three well locations in the onshore Jiza-Qamar Basin using organic geochemistry, biomarker, and carbon isotope measurements. The studied shale samples have high OM content with total organic carbon values between 0.74 and 19.48 wt %. Furthermore, they contain mainly hydrogen-poor Types III and IV kerogen, indicating the presence of the gas-prone source rock. The presence of these types of kerogen indicates the abundance of vitrinite and inertinite macerals, as established by microscopic investigation. However, the studied organic-rich shales had biomarker features, including high Ph/Ph ratio between 3.82 and 7.46, high Tm/Ts ratio of more than 7, and high C29 regular steranes compared to C27 and C28 regular steranes. Apart from the biomarker results, the studied Mukalla shales are characterized by the abundance of land-derived OM that deposited in fluvial to fluvial deltaic environments under highly oxic conditions. The finding of the considerable concentration of terrigenous OM is probably confirmed by the bulk carbon isotope and maceral composition data. The maturity indicators show that the examined organic-rich shale samples in the studied wells exhibit low VR values of up to 0.71%, and thereby, they have not been yet reached the high maturity for gas generation. This low maturity level in the studied wells is probably attributed to shallow burial depth, exhibiting depth of up to 2835 m. Therefore, the substantial gas exploration operations from the organic-rich shale source rock system of the Late Cretaceous Mukalla Formation can be recommended in the deeper stratigraphic succession in the offshore Jiza-Qamar Basin.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links