OBJECTIVE: In this research, for the first time, we investigate how facial muscle reaction is related to the reaction of the human brain.
METHODS: Since both electromyography (EMG) and electroencephalography (EEG) signals, as the features of muscle and brain activities, contain information, we benefited from the information theory and computed the Shannon entropy of EMG and EEG signals when subjects were exposed to different static visual stimuli with different Shannon entropies (information content).
RESULTS: Based on the obtained results, the variations of the information content of the EMG signal are related to the variations of the information content of the EEG signal and the visual stimuli. Statistical analysis also supported the results indicating that the visual stimuli with greater information content have a greater effect on the variation of the information content of both EEG and EMG signals.
CONCLUSION: This investigation can be further continued to analyze the relationship between facial muscle and brain reactions in case of other types of stimuli.
MATERIALS & METHODS: Data from all OT in June and mid-July 2017 were collected from recipients' cards, transfusion request forms and patient's case files, regarding discipline involved, indications, time intervals from request of blood transfusion to the completion of OT on patients, monitoring of patients and adverse reactions.
RESULTS: A total of 1285 transfusion cases were identified during the study period. 216 (16.8%) cases were OT while the 1069 (83.2%) cases were non-OT. Surgery discipline has the highest (30.1%) OT. The indications of OT were acute clinical need: 82.9%, less acute clinical need: 13.9% and no clinical need: 3.2%. A huge delay (average: 5 hours 40 minutes) in starting transfusion after grouping and crossmatching (GXM) completion was noted. Besides, 25.9% cases took <4 hours to complete OT; 83.4% cases did not have proper transfusion monitoring and three transfusion reactions were reported.
DISCUSSION: Although most of the OT cases had appropriate clinical indications, the transfusion can be commenced earlier at day time rather than overnight. Cases without absolute indication should avoid OT. The poor monitoring of patient during OT had posed risks to patients' life if an adverse transfusion reaction happened. The major reason for OTs was a huge delay in starting transfusion after the GXM completion. The contravention of 4-hour infusion rule increased the patients' risk of developing bacterial sepsis. The practice of OT should be discouraged wherever possible except for clinically indicated cases.
OBJECTIVE: In order to address this issue, we analyzed how leg muscle activity is related to the variations of the path of movement.
METHOD: Since the electromyography (EMG) signal is a feature of muscle activity and the movement path has complex structures, we used entropy analysis in order to link their structures. The Shannon entropy of EMG signal and walking path are computed to relate their information content.
RESULTS: Based on the obtained results, walking on a path with greater information content causes greater information content in the EMG signal which is supported by statistical analysis results. This allowed us to analyze the relation between muscle activity and walking path.
CONCLUSION: The method of analysis employed in this research can be applied to investigate the relation between brain or heart reactions and walking path.
OBJECTIVE: In this research we benefit from fractal analysis to study the effect of complexity of path of movement on the complexity of human brain reaction.
METHODS: For this purpose we calculate the fractal dimension of the electroencephalography (EEG) signal when subjects walk on different paths with different fractal dimensions (complexity).
RESULTS: The results of the analysis show that the complexity of brain activity increases with the increment of complexity of path of movement.
CONCLUSION: The method of analysis employed in this research can also be employed to analyse the reaction of the human heart and respiration when subjects move on paths with different complexities.
METHOD: For this purpose, we employ fractal theory and analyze the variations of fractal dimension of GSR and EEG signals when subjects are exposed to different olfactory stimuli in the form of pleasant odors.
RESULTS: Based on the obtained results, the complexity of GSR signal changes with the complexity of EEG signal in case of different stimuli, where by increasing the molecular complexity of olfactory stimuli, the complexity of EEG and GSR signals increases. The results of statistical analysis showed the significant effect of stimulation on variations of complexity of GSR signal. In addition, based on effect size analysis, fourth odor with greatest molecular complexity had the greatest effect on variations of complexity of EEG and GSR signals.
CONCLUSION: Therefore, it can be said that human skin reaction changes with the variations in the activity of human brain. The result of analysis in this research can be further used to make a model between the activities of human skin and brain that will enable us to predict skin reaction to different stimuli.