Displaying all 2 publications

Abstract:
Sort:
  1. Namazi H, Kulish VV, Wong A, Nazeri S
    Biomed Res Int, 2016;2016:8437247.
    PMID: 27376087 DOI: 10.1155/2016/8437247
    Cancer is a class of diseases characterized by out-of-control cells' growth which affect cells and make them damaged. Many treatment options for cancer exist. Chemotherapy as an important treatment option is the use of drugs to treat cancer. The anticancer drug travels to the tumor and then diffuses in it through capillaries. The diffusion of drugs in the solid tumor is limited by penetration depth which is different in case of different drugs and cancers. The computation of this depth is important as it helps physicians to investigate about treatment of infected tissue. Although many efforts have been made on studying and measuring drug penetration depth, less works have been done on computing this length from a mathematical point of view. In this paper, first we propose phase lagging model for diffusion of drug in the tumor. Then, using this model on one side and considering the classic diffusion on the other side, we compute the drug penetration depth in the solid tumor. This computed value of drug penetration depth is corroborated by comparison with the values measured by experiments.
  2. Namazi H, Akrami A, Nazeri S, Kulish VV
    Biomed Res Int, 2016;2016:5469587.
    PMID: 27699169
    An important challenge in brain research is to make out the relation between the features of olfactory stimuli and the electroencephalogram (EEG) signal. Yet, no one has discovered any relation between the structures of olfactory stimuli and the EEG signal. This study investigates the relation between the structures of EEG signal and the olfactory stimulus (odorant). We show that the complexity of the EEG signal is coupled with the molecular complexity of the odorant, where more structurally complex odorant causes less fractal EEG signal. Also, odorant having higher entropy causes the EEG signal to have lower approximate entropy. The method discussed here can be applied and investigated in case of patients with brain diseases as the rehabilitation purpose.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links