Displaying 1 publication

Abstract:
Sort:
  1. Lim WK, Kanelakis KC, Neubig RR
    Cell Signal, 2013 Feb;25(2):389-96.
    PMID: 23153586 DOI: 10.1016/j.cellsig.2012.11.002
    G protein-coupled receptors (GPCRs) transduce extracellular signals to the interior of the cell by activating membrane-bound guanine nucleotide-binding regulatory proteins (G proteins). An increasing number of proteins have been reported to bind to and regulate GPCRs. We report a novel regulation of the alpha(2A) adrenergic receptor (α(2A)-R) by the ubiquitous stress-inducible 70kDa heat shock protein, hsp70. Hsp70, but not hsp90, attenuated G protein-dependent high affinity agonist binding to the α(2A)-R in Sf9 membranes. Antagonist binding was unchanged, suggesting that hsp70 uncouples G proteins from the receptor. As hsp70 did not bind G proteins but complexed with the α(2A)-R in intact cells, a direct interaction with the receptor seems likely. In the presence of hsp70, α(2A)-R-catalyzed [(35)S]GTPγS binding was reduced by approximately 70%. In contrast, approximately 50-fold higher concentrations of hsp70 were required to reduce agonist binding to the stress-inducible 5-hydroxytryptamine(1A) receptor (5-HT(1A)-R). In heat-stressed CHO cells, the α(2A)-R was significantly uncoupled from G proteins, coincident with an increased localization of hsp70 at the membrane. The contrasting effect of hsp70 on the α(2A)-R compared to the 5-HT(1A)-R suggests that during stress, upregulation of hsp70 may attenuate signaling from specific GPCRs as part of the stress response to foster survival.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links