Displaying all 2 publications

Abstract:
Sort:
  1. Othman R, Kiat TS, Khalid N, Yusof R, Newhouse EI, Newhouse JS, et al.
    J Chem Inf Model, 2008 Aug;48(8):1582-91.
    PMID: 18656912 DOI: 10.1021/ci700388k
    A group of flavanones and their chalcones, isolated from Boesenbergia rotunda L., were previously reported to show varying degrees of noncompetitive inhibitory activities toward Dengue virus type 2 (Den2) protease. Results obtained from automated docking studies are in agreement with experimental data in which the ligands were shown to bind to sites other than the active site of the protease. The calculated K(i) values are very small, indicating that the ligands bind quite well to the allosteric binding site. Greater inhibition by pinostrobin, compared to the other compounds, can be explained by H-bonding interaction with the backbone carbonyl of Lys74, which is bonded to Asp75 (one of the catalytic triad residues). In addition, structure-activity relationship analysis yields structural information that may be useful for designing more effective therapeutic drugs against dengue virus infections.
  2. Teh AH, Saito JA, Baharuddin A, Tuckerman JR, Newhouse JS, Kanbe M, et al.
    FEBS Lett., 2011 Oct 20;585(20):3250-8.
    PMID: 21925500 DOI: 10.1016/j.febslet.2011.09.002
    Hell's Gate globin I (HGbI), a heme-containing protein structurally homologous to mammalian neuroglobins, has been identified from an acidophilic and thermophilic obligate methanotroph, Methylacidiphilum infernorum. HGbI has very high affinity for O(2) and shows barely detectable autoxidation in the pH range of 5.2-8.6 and temperature range of 25-50°C. Examination of the heme pocket by X-ray crystallography and molecular dynamics showed that conformational movements of Tyr29(B10) and Gln50(E7), as well as structural flexibility of the GH loop and H-helix, may play a role in modulating its ligand binding behavior. Bacterial HGbI's unique resistance to the sort of extreme acidity that would extract heme from any other hemoglobin makes it an ideal candidate for comparative structure-function studies of the expanding globin superfamily.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links