Displaying all 2 publications

Abstract:
Sort:
  1. Ng PC, Ahmad Ruslan NAS, Chin LX, Ahmad M, Abu Hanifah S, Abdullah Z, et al.
    J Food Sci, 2022 Jan;87(1):8-35.
    PMID: 34954819 DOI: 10.1111/1750-3841.15998
    Increasing public awareness of food quality and safety has prompted a rapid increase in food authentication of halal food, which covers the production method, technical processing, identification of undeclared components, and species substitution in halal food products. This urges for extensive research into analytical methods to obtain accurate and reliable results for monitoring and controlling the authenticity of halal food. Nonetheless, authentication of halal food is often challenging because of the complex nature of food and the increasing number of food adulterants that cause detection difficulties. This review provides a comprehensive and impartial overview of recent studies on the analytical techniques used in the analysis of halal food authenticity (from 1980 to the present, but there has been no significant trend in the choice of techniques for authentication of halal food during this period). Additionally, this review highlights the classification of different methodologies based on validity measures that provide valuable information for future developments in advanced technology. In addition, methodological developments, and novel emerging techniques as well as their implementations have been explored in the evaluation of halal food authentication. This includes food categories that require halal authentication, illustrating the advantages and disadvantages as well as shortcomings during the use of all approaches in the halal food industry.
  2. Wong LP, Ong RT, Poh WT, Liu X, Chen P, Li R, et al.
    Am J Hum Genet, 2013 Jan 10;92(1):52-66.
    PMID: 23290073 DOI: 10.1016/j.ajhg.2012.12.005
    Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links