An investigation was undertaken for screening and isolating nematophagous-fungi from the faecal samples of various grazing animals and soils in Malaysia. Total of 111 faeces and 50 soil samples were collected and the samples were cultured on 2% water agar plates. The growth of nematophagous-fungi was stimulated by sprinkling-baiting technique. The conidia of suspected nematophagous-fungi were inoculated on 2% water agar plates. All isolated were maintained on 2% cornmeal agar plates. Verticillium spp., Fusarium spp. and Arthrobotrys spp. were identified from the faecal and soil samples. 62.5% of the faecal samples and 100% of the soil samples were shown to be positive with nematophagous-fungi. This study highlights the present of nematophagous-fungi population in faecal and soil samples. Much study remains to be done to better understanding some fungi especially their mode of action and their predatory behaviour against parasitic nematodes.
There has been increasing interest in the study of Blastocystis in the last two decades. Many studies have been carried out in human and animal hosts including environmental sources, but there is little or no information on the occurrence of Blastocystis in water sources worldwide. Therefore, this study aimed at assessing the occurrence of Blastocystis in water sources across the world from 2005 to 2022, noting the method of detection and the distribution of the subtypes from various water sources. A literature search was performed on internet-based databases including Google search, PubMed, Scopus, and Web of Science. Upon application of the criteria for inclusion, 25 articles revealing the occurrence of Blastocystis in water sources in 15 countries were included in the review. Blastocystis occurrence varies across water sources ranging from 0% in a drinking water source in Venezuela to 100% in rivers; well water, stored water, and fishpond in Nepal and Malaysia; and fountain water, irrigation water, and rainwater in Italy, Spain, and Thailand. The occurrence of the parasite was significantly associated with the coliform count, temperature, conductivity, dissolved oxygen, turbidity, total dissolved solids, and chemical oxygen demand. A total of 11 Blastocystis subtypes were identified in water sources worldwide, namely, ST1-ST8, ST10, ST23, and ST26 in which ST1 and ST3 were the most prevalent subtypes. Considering the importance of Blastocystis as a waterborne parasite, the subtype distribution and morphological distinction in water sources need to be carried out using molecular and electron microscopic techniques. Existing studies have covered only about 10% of the world's countries.