The current work is an attempt to reduce friction coefficient of the treated betelnut fibre reinforced polyester (T-BFRP) composites by aging them in twelve different solutions with different kinematic viscosities. The test will be performed on a pin on disc (POD) wear test rig using different applied loads (5⁻30 N), different sliding distances (0⁻6.72 km) at sliding speed of 2.8 m/s subjected to a smooth stainless steel counterface (AISI-304). Different orientations of the fibre mats such as anti-parallel (AP) and parallel (P) orientations subjected to the rotating counterface will be considered. The worn surfaces were examined through optical microscopy imaging and it was found that the aged specimens had significantly lower damages as compared to neat polyester (NP) and the unaged samples. Besides, P-O samples revealed lower friction coefficients as compared to AP-O, i.e., reduction was about 24.71%. Interestingly, aging solutions with lower kinematic viscosities revealed lower friction coefficients of the aged T-BFRP composites when compared to the ones aged in higher kinematic viscosities.
To reduce the emission of harmful materials into the ecosystem, researchers have been exploring the potential of manufacturing polymeric composites based on natural fibres. Although the large area of application of these materials has encouraged investigations of their performance under various loading conditions, less research has been conducted on their tribological behaviour. Hence, in this study, tribological tests were conducted on epoxy composites based on bamboo fibres. The wear performance of bamboo fibre reinforced epoxy was tested using various operating parameters, and the worn surfaces were examined using optical microscopy. The results revealed that the specific wear rate of the composites reduced since the epoxy was reinforced with bamboo fibres. Scanning electron microscopy analysis showed different wear mechanisms and damages.