On 14 April 2014, the first laboratory-confirmed case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection was reported in Malaysia in a man in his mid-fifties, who developed pneumonia with respiratory distress, after returning from a pilgrimage to Saudi Arabia. The case succumbed to his illness three days after admission at a local hospital. The follow-up of 199 close contacts identified through contact tracing and vigilant surveillance did not result in detecting any other confirmed cases of MERS-CoV infection.
In this study, we report the comparative genomics and phylogenetic analysis of Corynebacterium diphtheriae strain B-D-16-78 that was isolated from a clinical specimen in 2016. The complete genome of C. diphtheriae strain B-D-16-78 was sequenced using PacBio Single Molecule, Real-Time sequencing technology and consists of a 2,474,151-bp circular chromosome with an average GC content of 53.56%. The core genome of C. diphtheriae was also deduced from a total of 74 strains with complete or draft genome sequences and the core genome-based phylogenetic analysis revealed close genetic relationship among strains that shared the same MLST allelic profile. In the context of CRISPR-Cas system, which confers adaptive immunity against re-invading DNA, 73 out of 86 spacer sequences were found to be unique to Malaysian strains which harboured only type-II-C and/or type-I-E-a systems. A total of 48 tox genes which code for the diphtheria toxin were retrieved from the 74 genomes and with the exception of one truncated gene, only nucleotide substitutions were detected when compared to the tox gene sequence of PW8. More than half were synonymous substitution and only two were nonsynonymous substitutions whereby H24Y was predicted to have a damaging effect on the protein function whilst T262V was predicted to be tolerated. Both toxigenic and non-toxigenic toxin-gene bearing strains have been isolated in Malaysia but the repeated isolation of toxigenic strains with the same MLST profile suggests the possibility of some of these strains may be circulating in the population. Hence, efforts to increase herd immunity should be continued and supported by an effective monitoring and surveillance system to track, manage and control outbreak of cases.
Influenza seasonality in equatorial countries is little understood. Seasonal and alert influenza thresholds were determined for Malaysia, using laboratory-based data obtained from the Malaysia Influenza Surveillance System and a major teaching hospital, from 2011 to 2016. Influenza was present year-round, with no clear annual seasons. Variable periods of higher transmission occurred inconsistently, in November to December, January to March, July to September, or a combination of these. These coincide with seasons in the nearby southeast Asian countries or winter seasons of the northern and southern hemispheres. Changes in the predominant circulating influenza type were only sometimes associated with increased transmission. The data can provide public health interventions such as vaccines.