Displaying all 2 publications

Abstract:
Sort:
  1. Nunes MH, Jucker T, Riutta T, Svátek M, Kvasnica J, Rejžek M, et al.
    Nat Commun, 2021 03 09;12(1):1526.
    PMID: 33750781 DOI: 10.1038/s41467-020-20811-y
    The past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted to oil palm and other plantations, and much of the remaining forest heavily logged. Little is known about how fragmentation influences recovery and whether climate change will hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry 2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo. We show that the drought led to increased leaf shedding and branch fall. Short forest, regenerating after heavy logging, continued to grow despite higher evaporative demand, except when it was located close to oil palm plantations. Edge effects from the plantations extended over 300 metres into the forests. Forest growth on hilltops and slopes was particularly impacted by the combination of fragmentation and drought, but even riparian forests located within 40 m of oil palm plantations lost canopy height during the drought. Our results suggest that small patches of logged forest within plantation landscapes will be slow to recover, particularly as ENSO events are becoming more frequent.
  2. Terryn L, Calders K, Meunier F, Bauters M, Boeckx P, Brede B, et al.
    Glob Chang Biol, 2024 Aug;30(8):e17473.
    PMID: 39155688 DOI: 10.1111/gcb.17473
    Tree allometric models, essential for monitoring and predicting terrestrial carbon stocks, are traditionally built on global databases with forest inventory measurements of stem diameter (D) and tree height (H). However, these databases often combine H measurements obtained through various measurement methods, each with distinct error patterns, affecting the resulting H:D allometries. In recent decades, terrestrial laser scanning (TLS) has emerged as a widely accepted method for accurate, non-destructive tree structural measurements. This study used TLS data to evaluate the prediction accuracy of forest inventory-based H:D allometries and to develop more accurate pantropical allometries. We considered 19 tropical rainforest plots across four continents. Eleven plots had forest inventory and RIEGL VZ-400(i) TLS-based D and H data, allowing accuracy assessment of local forest inventory-based H:D allometries. Additionally, TLS-based data from 1951 trees from all 19 plots were used to create new pantropical H:D allometries for tropical rainforests. Our findings reveal that in most plots, forest inventory-based H:D allometries underestimated H compared with TLS-based allometries. For 30-metre-tall trees, these underestimations varied from -1.6 m (-5.3%) to -7.5 m (-25.4%). In the Malaysian plot with trees reaching up to 77 m in height, the underestimation was as much as -31.7 m (-41.3%). We propose a TLS-based pantropical H:D allometry, incorporating maximum climatological water deficit for site effects, with a mean uncertainty of 19.1% and a mean bias of -4.8%. While the mean uncertainty is roughly 2.3% greater than that of the Chave2014 model, this model demonstrates more consistent uncertainties across tree size and delivers less biased estimates of H (with a reduction of 8.23%). In summary, recognizing the errors in H measurements from forest inventory methods is vital, as they can propagate into the allometries they inform. This study underscores the potential of TLS for accurate H and D measurements in tropical rainforests, essential for refining tree allometries.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links