We studied the excitation functions of residual radionuclides produced via proton and deuteron bombardment on natural iridium in the energy ranges of 30-15 MeV and 50-15 MeV, respectively. A conventional stacked-foil activation technique combined with HPGe γ-ray spectrometry was used to measure the excitation functions for 189, 191Pt and 189, 190g, 192g, 194gIr radionuclide production. Theoretical thick target yields were estimated to be 172 MBq/µA h and 192 MBq/µA h via the 193Ir(p,3n)191Pt reaction at 29.6-17.5 MeV and the 193Ir(d,4n)191Pt reaction at 40.3-23.8 MeV, respectively. The feasibility of 191Pt production from an iridium target was discussed, and compared with previously reported methods for the production of 191Pt.