Displaying all 3 publications

Abstract:
Sort:
  1. Lim PT, Ogata T
    Toxicon, 2005 May;45(6):699-710.
    PMID: 15804519
    Four tropical PSP toxins-producing dinoflagellates, Alexandrium minutum, Alexandrium tamiyavanichii, Alexandrium tamarense and Alexandrium peruvianum from Malaysian waters were studied to investigate the influences of salinity on growth and toxin production. Experiments were conducted on constant temperature 25 degrees C, 140 microE mol m(-2) s(-1) and under 14:10 light:dark photo-cycle with salinity ranged from 2 to 30 psu. The PSP-toxin congeners, GTX 1-6, STX, dcSTX, NEO and C1-C2 were analysed by high performance liquid chromatography. Salinity tolerance of the four species in decreasing order is A. minutum>A. peruvianum>A. tamarense>A. tamiyavanichii. Specific growth rates and maximum densities varied among these species with A. minutum recorded as the highest, 0.5 day(-1) and 6 x 10(4) cells L(-1). Toxin content decreased with elevated salinities in A. minutum, the highest toxin content was about 12 fmole cell(-1) at 5 psu. In A. tamiyavanichii, toxin content peaked at optimal growth salinity (20 and 25 psu). Toxin content of A. tamarense, somehow peaked at sub-optimal growth salinity (15 and 30 psu). Results of this study implied that salinity fluctuation not only influenced the growth physiology but also toxin production of these species.
  2. Nakashima M, Tohyama J, Nakagawa E, Watanabe Y, Siew CG, Kwong CS, et al.
    J Hum Genet, 2019 Apr;64(4):313-322.
    PMID: 30655572 DOI: 10.1038/s10038-018-0559-z
    Casein kinase 2 (CK2) is a serine threonine kinase ubiquitously expressed in eukaryotic cells and involved in various cellular processes. In recent studies, de novo variants in CSNK2A1 and CSNK2B, which encode the subunits of CK2, have been identified in individuals with intellectual disability syndrome. In this study, we describe four patients with neurodevelopmental disorders possessing de novo variants in CSNK2A1 or CSNK2B. Using whole-exome sequencing, we detected two de novo variants in CSNK2A1 in two unrelated Japanese patients, a novel variant c.571C>T, p.(Arg191*) and a recurrent variant c.593A>G, p.(Lys198Arg), and two novel de novo variants in CSNK2B in Japanese and Malaysian patients, c.494A>G, p.(His165Arg) and c.533_534insGT, p.(Pro179Tyrfs*49), respectively. All four patients showed mild to profound intellectual disabilities, developmental delays, and various types of seizures. This and previous studies have found a total of 20 CSNK2A1 variants in 28 individuals with syndromic intellectual disability. The hotspot variant c.593A>G, p.(Lys198Arg) was found in eight of 28 patients. Meanwhile, only five CSNK2B variants were identified in five individuals with neurodevelopmental disorders. We reviewed the previous literature to verify the phenotypic spectrum of CSNK2A1- and CSNK2B-related syndromes.
  3. Sakamoto M, Iwama K, Sasaki M, Ishiyama A, Komaki H, Saito T, et al.
    Genet Med, 2022 Dec;24(12):2453-2463.
    PMID: 36305856 DOI: 10.1016/j.gim.2022.08.007
    PURPOSE: Cerebellar hypoplasia and atrophy (CBHA) in children is an extremely heterogeneous group of disorders, but few comprehensive genetic studies have been reported. Comprehensive genetic analysis of CBHA patients may help differentiating atrophy and hypoplasia and potentially improve their prognostic aspects.

    METHODS: Patients with CBHA in 176 families were genetically examined using exome sequencing. Patients with disease-causing variants were clinically evaluated.

    RESULTS: Disease-causing variants were identified in 96 of the 176 families (54.5%). After excluding 6 families, 48 patients from 42 families were categorized as having syndromic associations with CBHA, whereas the remaining 51 patients from 48 families had isolated CBHA. In 51 patients, 26 aberrant genes were identified, of which, 20 (76.9%) caused disease in 1 family each. The most prevalent genes were CACNA1A, ITPR1, and KIF1A. Of the 26 aberrant genes, 21 and 1 were functionally annotated to atrophy and hypoplasia, respectively. CBHA+S was more clinically severe than CBHA-S. Notably, ARG1 and FOLR1 variants were identified in 2 families, leading to medical treatments.

    CONCLUSION: A wide genetic and clinical diversity of CBHA was revealed through exome sequencing in this cohort, which highlights the importance of comprehensive genetic analyses. Furthermore, molecular-based treatment was available for 2 families.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links