Displaying all 2 publications

Abstract:
Sort:
  1. Ogoh K, Akiyoshi R, Suzuki H
    Biochem Biophys Rep, 2020 Sep;23:100771.
    PMID: 32490216 DOI: 10.1016/j.bbrep.2020.100771
    Bioluminescence microscopy is an area attracting considerable interest in the field of cell biology because it offers several advantages over fluorescence microscopy, including no requirement for excitation light and being phototoxicity free. This method requires brighter luciferase for imaging; however, suitable genetic resource material for this purpose is not available at present. To achieve brighter bioluminescence microscopy, we developed a new firefly luciferase. Using the brighter luciferase, a reporter strain of Drosophila Gal4-UAS (Upstream Activating Sequence) system was constructed. This system demonstrated the expression pattern of engrailed, which is a segment polarity gene, during Drosophila metamorphosis by bioluminescence microscopy, and revealed drastic spatiotemporal change in the engrailed expression pattern during head eversion in the early stage of pupation.
  2. Jimi N, Bessho-Uehara M, Nakamura K, Sakata M, Hayashi T, Kanie S, et al.
    R Soc Open Sci, 2023 Mar;10(3):230039.
    PMID: 36998762 DOI: 10.1098/rsos.230039
    Bioluminescence, a phenomenon observed widely in organisms ranging from bacteria to metazoans, has a significant impact on the behaviour and ecology of organisms. Among bioluminescent organisms, Polycirrus, which has unique emission wavelengths, has received attention, and advanced studies such as RNA-Seq have been conducted, but they are limited to a few cases. In addition, accurate species identification is difficult due to lack of taxonomic organization. In this study, we conducted comprehensive taxonomic survey of Japanese Polycirrus based on multiple specimens from different locations and described as three new species: Polycirrus onibi sp. nov., P. ikeguchii sp. nov. and P. aoandon sp. nov. The three species can be distinguished from the known species based on the following characters: (i) arrangement of mid-ventral groove, (ii) arrangement of notochaetigerous segments, (iii) type of neurochaetae uncini, and (iv) arrangement of nephridial papillae. By linking the bioluminescence phenomenon with taxonomic knowledge, we established a foundation for future bioluminescent research development. We also provide a brief phylogenetic tree based on cytochrome c oxidase subunit I (COI) sequences to discuss the evolution of bioluminescence and the direction of future research.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links