Community phylogenetic analysis is an effective approach to understanding the process of community formation. The phylogenetic tree of the species pool is reconstructed in the first step, and the phylogenetic tree obtained in the second step is used to analyze phylogenetic diversity. Sythetic trees have often been used in the construction of phylogenentic trees; however, in tropical rainforests with many closely related species, synthetic trees contain many unresolved nodes, which may affect the results of phylogenetic structure analysis. Here, we constructed a phylogenetic tree using DNA barcode sequences (rbcL, matK, trnH-psbA) for 737 tree species from the rainforests of Borneo, which have a high-species diversity and many closely related species. The phylogenetic tree had fewer polytomies and more branch length variations than the Phylocom synthetic trees. Comparison of community phylogenetic analyses indicated that values of the standardized effect size of mean pairwise distance (SES-MPD) were highly correlated between Phylocom and DNA barcode trees, but less so for the standardized effect size of mean nearest taxon distance (SES-MNTD), suggesting that caution is needed when using synthetic trees for communities containing many congeneric species, especially when using SES-MNTD. Simulation analysis suggested that spatial dependence on phylogenetic diversity is related to the phylogenetic signal of the species' habitat niche and the spatial structure of habitat, indicating the importance of detailed phylogeny in understanding community assembly processes.
We report the observation of ϒ(2S)→γη_{b}(1S) decay based on an analysis of the inclusive photon spectrum of 24.7 fb^{-1} of e^{+}e^{-} collisions at the ϒ(2S) center-of-mass energy collected with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. We measure a branching fraction of B[ϒ(2S)→γη_{b}(1S)]=(6.1_{-0.7-0.6}^{+0.6+0.9})×10^{-4} and derive an η_{b}(1S) mass of 9394.8_{-3.1-2.7}^{+2.7+4.5} MeV/c^{2}, where the uncertainties are statistical and systematic, respectively. The significance of our measurement is greater than 7 standard deviations, constituting the first observation of this decay mode.
We report the results of a search for the rare, purely leptonic decay B^{-}→μ^{-}ν[over ¯]_{μ} performed with a 711 fb^{-1} data sample that contains 772×10^{6} BB[over ¯] pairs, collected near the ϒ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. The signal events are selected based on the presence of a high momentum muon and the topology of the rest of the event showing properties of a generic B-meson decay, as well as the missing energy and momentum being consistent with the hypothesis of a neutrino from the signal decay. We find a 2.4 standard deviation excess above background including systematic uncertainties, which corresponds to a branching fraction of B(B^{-}→μ^{-}ν[over ¯]_{μ})=(6.46±2.22±1.60)×10^{-7} or a frequentist 90% confidence level interval on the B^{-}→μ^{-}ν[over ¯]_{μ} branching fraction of [2.9,10.7]×10^{-7}.
We report the first observation of the spontaneous polarization of Λ and Λ[over ¯] hyperons transverse to the production plane in e^{+}e^{-} annihilation, which is attributed to the effect arising from a polarizing fragmentation function. For inclusive Λ/Λ[over ¯] production, we also report results with subtracted feed-down contributions from Σ^{0} and charm. This measurement uses a dataset of 800.4 fb^{-1} collected by the Belle experiment at or near a center-of-mass energy of 10.58 GeV. We observe a significant polarization that rises with the fractional energy carried by the Λ/Λ[over ¯] hyperon.